
ISBN 978-82-326-4734-7 (printed ver.)
ISBN 978-82-326-4735-4 (electronic ver.)

 1503-8181

Doctoral theses at NTNU, 2020:193

Tor Gunnar Høst Houeland

Automated lazy metalearning in
introspective reasoning systems

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:193
Tor G

unnar H
øst H

oueland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce

Abstract

Machine learning systems are becoming increasingly widespread and important,
and these days machine learning is used in some form in most industries. However,
the application of machine learning technology still has a relatively high barrier to
entry, requiring both machine learning expertise and domain knowledge.

In this thesis, we present a metareasoning approach to multi-method machine
learning that allows the system to adapt and optimize learning for a given domain
automatically, without requiring human expert judgment. In contrast to popular
deep learning methods for similar situations, the approach presented here does not
require specialized hardware nor large data sets.

Multiple machine learning components are continuously evaluated at run-time
while solving problems, using a framework to analyze overall system performance
based on observed prediction performance and time spent. The system automat-
ically learns to prioritize the methods with the best empirical performance for a
given domain.

In experiments using data sets from the UCI machine learning repository and
machine learning methods from the Weka suite, an example implementation out-
performed individual methods and other metareasoning approaches.

i

ii

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of philosophiae
doctor. The research work reported herein was conducted at the Department of
Computer Science (IDI), NTNU.

This doctoral work was financed by and conducted at the Department of Com-
puter Science, NTNU, Trondheim, with Agnar Aamodt as the main supervisor and
Helge Langseth as co-supervisor.

Additionally, Google supported me by allowing me to spend part of my time
at work to complete writing the last paper “A Learning System based on Lazy
Metareasoning” and this thesis itself.

iii

iv

Acknowledgments

Firstly, I would like to thank my primary supervisor Agnar Aamodt for his help
throughout my research. Our discussions and his feedback were foundational for
the research presented in this thesis, and I could not have completed this work
without his continued support and encouragement.

Secondly, I would also like to thank my co-supervisors, my research group and
other researchers at IDI, and my fellow PhD students for their collaboration, helpful
feedback, and many interesting discussions.

I would also like to thank Google and my managers there for letting me spend
“20% time” and take time off when needed to complete the work on my thesis.

Finally, I would like to thank my wife Weilin and my parents for their love and
support, especially during the personally challenging third phase of my thesis work.
I would not have been able to complete this work without them.

v

vi

Contents

Abstract i

Preface iii

Acknowledgments v

I Research overview 1

1 Introduction 3

1.1 Motivation . 3

1.2 Research objectives . 3

1.3 Research methodology . 5

1.4 Thesis structure . 5

1.4.1 Part I . 6

1.4.2 Part II . 6

2 Background and design principles 9

2.1 Predicting from examples . 9

2.1.1 Practical machine learning . 10

2.2 Effective machine learning . 11

2.3 Lazy and eager learning . 13

2.4 Metareasoning architectures . 13

2.4.1 Data set meta-knowledge . 15

2.4.2 Failure-driven learning . 15

2.4.3 Optimizing generalization performance 16

2.5 Multiple classifier systems . 16

2.6 Bandit algorithms . 18

2.6.1 Multi-armed bandit policies 18

2.6.2 Epsilon-based policies . 19

2.6.3 UCB and UCT policies . 19

vii

CONTENTS

3 Research summary 21
3.1 Research process overview . 21

3.1.1 Main research phases . 21
3.2 Phase I: Learning in case-based reasoning 22

3.2.1 Paper A . 24
3.2.2 Paper B . 25

3.3 Phase II: Performance/cost trade-off in specific scenarios 26
3.3.1 Paper C . 27
3.3.2 Paper D . 28
3.3.3 Paper E . 29

3.4 Phase III: Autonomous self-optimizing learning systems 31
3.4.1 Paper F . 33

4 Evaluation and discussion 35
4.1 Research questions and contributions 35
4.2 Random decision tree algorithm . 38
4.3 Comparing ALMA to Leake and Wilson’s position paper 38
4.4 The effect of adding a metareasoning layer 40

5 Concluding remarks 43
5.1 Future work . 44

II Selected papers 51

A An Introspective Component-Based Approach for Meta-Level Rea-
soning in Clinical Decision Support Systems 53

B The Utility Problem for Lazy Learners - Towards a Non-eager
Approach 67

C An Efficient Random Decision Tree Algorithm for Case-Based
Reasoning Systems 85

D An Efficient Hybrid Classification Algorithm - an Example from
Palliative Care 93

E Extended abstract: Combining CBR and BN using metareason-
ing 103

F A Learning System based on Lazy Metareasoning 117

viii

Part I

Research overview

1

Chapter 1

Introduction

1.1 Motivation

Machine learning systems have achieved considerable success in recent years, and
are being used in more and more applications. However, new applications com-
monly rely on human experts to perform crucial tasks: modeling the domain,
processing the data to be suitable for machine learning, selecting an appropriate
machine learning method, optimizing parameters, etc. These decisions are domain-
dependent and often rely on domain experts working together with knowledge en-
gineers to extract and structure the required domain knowledge, which is costly
and time-consuming. This is known as the knowledge acquisition bottleneck, which
is limiting the usefulness of machine learning for practical applications.

Automatic machine learning (AutoML) is an alternative to this expertise-driven
process, where machine learning systems instead learn entirely autonomously from
data without human intervention. To achieve this goal, a computer system needs to
simultaneously reason about different knowledge types and about how to combine
them to meet higher-level goals.

This thesis explores how a practical system can effectively combine several types
of reasoning based on explicit representations of reasoning methods and meta-
reasoning processes, without requiring human experts or specialized hardware. In
particular, the ALMA system presented in this thesis is a metareasoning system
[15] addressing three fundamental issues identified by Leake and Wilson [33]: hav-
ing a flexible learning focus, enabling multistrategy introspective learning, and
monitoring processing characteristics in addition to outcomes.

1.2 Research objectives

The overall goal of the research presented in this thesis is to examine the role of
learning in introspective reasoning systems, and how this kind of learning can be
achieved in fully automated systems that do not require manual expert configura-
tion and tuning.

3

1.2. RESEARCH OBJECTIVES

This overall goal is divided into four specific research questions. The first two
research questions form the background for developing such systems: what advan-
tages do the combination of learning and introspection provide for such systems,
and how does it set them apart from other paradigms? The latter two research ques-
tions concern the development of a new system demonstrating these advantages,
which includes a working metalearning design that can be applied to practical
problem-solving.

Introspective learning research questions

RQ1 How can learners perform better using introspective capabilities?

This research question is concerned with examining what the capabilities of
introspective reasoners are, and specifically in which ways they can improve
learning abilities. The focus is on fully automated reasoning systems, which
means that any such introspective capabilities need to be clear and explicit
enough to be programmable and able to run autonomously without human
assistance.

RQ2 How can the performance of reasoning systems with different capabilities be
evaluated?

Evaluating a system’s performance is essential to know whether it is actually
improving or not. A high-level goal might be to increase the intelligence of
a system, but the exact meaning of intelligence is notoriously vague and dif-
ficult to define precisely. Instead, performance can be based on the results
achieved, which are objective and unambiguous but do not necessarily gener-
alize beyond exactly what was measured. The challenge here is to determine
meaningful performance measurements that are sufficient to demonstrate use-
ful and effective overall system improvements, particularly with limited com-
puting resources available.

Architecture development research questions

RQ3 How can a lazy metareasoning architecture take advantage of introspective
capabilities?

Metareasoning enables a system to reason at a higher level about its own
reasoning capabilities, not just to reason at the object-level about the specific
problems to be solved. Lazy learning allows a system to learn from new
knowledge that was not known ahead of time. The goal of this research
question is to demonstrate a system architecture based on lazy metareasoning
that can learn about its own reasoning capabilities and is able to improve
them with experience.

RQ4 How can a practical metareasoning system automatically adapt to application-
specific characteristics?

Inductive reasoning, predicting the future, or generalizing beyond training
examples is not justifiable in the general case without making any assump-
tions. To be effective, machine learning always depends on an application

4

CHAPTER 1. INTRODUCTION

domain having sufficient structure and redundancy to make meaningful in-
ferences. The effectiveness of a machine learning method can be viewed as
how well the learning method assumptions match the domain characteris-
tic. This research question is concerned with developing methods to allow a
lazy metareasoning system to reason efficiently and effectively in diverse and
practical application domains without specific manual tuning.

1.3 Research methodology

The work presented in this thesis is primarily pure research to discover new knowl-
edge, with an objective of exploring new forms of learning. Initially, a literature
study was performed to describe how learning was performed in existing systems
and machine learning paradigms, and then the novel work was to examine several
different ways to extend and generalize these approaches to gain new capabilities.
The focus was on new ways of combining existing methods from different sub-fields,
rather than creating new methods from scratch.

An important part of this research was to consider empirical performance - how
well methods actually make predictions in concrete reasoning scenarios. This is
in contrast to a popular direction in statistical learning theory, which assume a
given form of underlying process is generating the data, and then analyze models
and derive statistical guarantees that apply more generally to all methods when
the assumptions hold. The problem with that approach for this research is two-
fold: first, the assumptions typically don’t hold perfectly, for example samples are
often not drawn completely independently from the exact same distribution but
many analyses assume so. Second, there are large amounts of unknown internal
structure in the problem domains that make the problem much easier than solving
”the general case”. To perform well without requiring human tuning, learning
methods have to autonomously discover and take advantage of this structure in
some way.

Empirical performance for real scenarios was especially important in the last
part of the work, which was a constructive proof that the proposed ALMA archi-
tecture can achieve the desired improvements, by actually implementing a sample
system and running it with a varied set of reasoning methods and data sets.

To evaluate the research results, the performance of the implemented ALMA
system was compared with other approaches in an online learning benchmark with
21 data sets. This also includes a statistical analysis of the per-data set results,
showing that most of the results are highly statistically significant.

1.4 Thesis structure

This thesis is a compilation thesis, with the main research contributions contained
in already-published papers which are reproduced in the second part of the thesis.
The overall structure of the thesis is as follows:

5

1.4. THESIS STRUCTURE

1.4.1 Part I

Chapter 1 introduced the underlying motivation and main objectives for the the-
sis research.

Chapter 2 presents background and a sample of related research work from the
literature, together with basic design principles for this research work.

Chapter 3 presents an overview of the research process followed for this thesis,
including an overview of the papers and how their topics correspond to the
stated research objectives.

Chapter 4 evaluates and discusses our results.

Chapter 5 ends the thesis with concluding remarks and possible directions for
future research.

1.4.2 Part II

The papers build on top of each other, matching the way the research questions
build on top of each other. Each paper has been classified as primarily addressing
one research question, based on the most important contribution:

[RQ1] How can learners perform better using introspective capabilities?

Paper A Houeland, T.G., Aamodt, A.: An Introspective Component-Based Ap-
proach for Meta-Level Reasoning in Clinical Decision Support Systems. In:
Kofod-Petersen, A., Langseth, H., Gundersen, O. E. (eds.) Proceedings of the
First Norwegian Artificial Intelligence Symposium (NAIS’09). pp. 121–132.
Tapir Forlag (2009), ISBN: 978-82-519-2519-8

[RQ2] How can the performance of reasoning systems with different
capabilities be evaluated?

Paper B Houeland, T.G., Aamodt, A.: The Utility Problem for Lazy Learners -
Towards a Non-eager Approach. In: Bichindaritz, I., Montani, S. (eds.) Case-
Based Reasoning. Research and Development, Lecture Notes in Computer
Science, vol. 6176, pp. 141–155. Springer (2010),
https://doi.org/10.1007/978-3-642-14274-1_12

[RQ3] How can a lazy metareasoning architecture take advantage of
introspective capabilities?

Paper C Houeland, T.G.: An Efficient Random Decision Tree Algorithm for
Case-Based Reasoning Systems. In: Murray, R.C., McCarthy, P.M. (eds.)
Proceedings of the Twenty-Fourth International Florida Artificial Intelligence
Research Society Conference, pp 401-406. AAAI Press (2011),
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2639

6

CHAPTER 1. INTRODUCTION

Paper D Houeland, T.G., Aamodt, A.: An Efficient Hybrid Classification Algo-
rithm – An Example from Palliative Care. In: Corchado E., Kurzyński M.,
Woźniak M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture
Notes in Computer Science, vol 6679, pp. 197–204.. Springer, Berlin, Heidel-
berg (2011),
https://doi.org/10.1007/978-3-642-21222-2_24

[RQ4] How can a practical metareasoning system automatically adapt
to application-specific characteristics?

Paper E Houeland, T.G, Bruland, T., Aamodt, A., Langseth, H.: Extended ab-
stract: Combining CBR and BN using metareasoning. In: A. Kofod-Petersen
et al. (Eds.) Eleventh Scandinavian Conference on Artificial Intelligence, pp.
189–190. IOS Press (2011),
https://doi.org/10.3233/978-1-60750-754-3-189

Full paper, with title “A hybrid metareasoning architecture combining case-
based reasoning and Bayesian networks” (unpublished)

Paper F Houeland, T.G., Aamodt, A.: A Learning System based on Lazy Metar-
easoning. Progress in Artificial Intelligence, vol 7 issue 2, pp. 129–146.
Springer Berlin Heidelberg (2018),
https://doi.org/10.1007/s13748-017-0138-0

7

1.4. THESIS STRUCTURE

8

Chapter 2

Background and design prin-
ciples

This chapter begins with a brief overview of machine learning and introduces an
approach for categorizing and evaluating learning methods, which underpins the
automatic learning systems described later in this thesis. Section 2.3 introduces
lazy and eager learning, two approaches for how to think about learning systems.
Section 2.4 discusses learning architectures that incorporate metareasoning to in-
crease their effectiveness, and section 2.5 discusses methods for combining multiple
algorithms in reasoning systems. Finally section 2.6 gives an overview of bandit
methods, which are used at the metareasoning level throughout this thesis.

2.1 Predicting from examples

There is no assumption-free basis for making predictions - at a minimum one would
for example have to assume that the future has some sort of dependency on what
happened in the past. This has been known since ancient history, and expressed
by for example Pyrrhonian skeptics as the impossibility of establishing a universal
rule based on particulars, Hume as the problem of induction for reasoning from the
observed to the unobserved, or Wolpert as that estimating generalization accuracy
cannot be formally justified without assumptions [51].

On the other hand, there is ample evidence that predictions often work well in
practice, and the future tends to depend on the past. For example, the sun keeps
rising every day, and the position of objects is related to where they were a second
ago. In particular, it has been observed that many interesting problems have a
similar tendency relating complexity and generalization error: simpler models that
match observed data tend to generalize to unseen data better than more complex
models.

For example, Ptolemy preferred simpler hypotheses, Occam’s razor is a famous
principle for preferring hypotheses with fewer assumptions, and Solomonoff induc-
tion assigns a higher a priori weight to computable theories generated from shorter

9

2.1. PREDICTING FROM EXAMPLES

programs [42].

There are some notable exceptions though - e.g. predicting the next output of
a cryptographically secure function. Although not completely random, this type of
problem is close to an uninformative scheme where the future doesn’t depend on
the past, and is generally unsuitable for learning from examples.

Learnability also depends on the distribution of examples. The theoretical
hypothesis boosting problem fundamentally asks whether the existence of a learning
algorithm that is only slightly better than random guessing implies the existence
of a learning algorithm that is arbitrarily accurate, and surprisingly this has been
shown to be true [29]. What this also means is that unless there exists an arbitrarily
strong learner for a given domain, there are sets of adversarial inputs (e.g. problem
distributions only containing corner cases) where it is not possible to do better
than chance. For example, recognizing handwritten digits can be learned with
high precision from uniformly randomly chosen samples of handwriting, but not if
the distribution is skewed such that all the test examples are ambiguous edge-cases
indistinguishable by human experts (such as only images half-way between a 1 and
a 7).

2.1.1 Practical machine learning

Assuming the domain is learnable, a general way to think about the usefulness of
a prediction system is to imagine that every action performed by the system can
be measured and result in some form of numerical score indicating how useful it
was. Reinforcement learning is a very general framework for this scenario, where a
learning system is given feedback in the form of reward signals indicating desirable
behavior, and is supposed to learn how to behave in order to optimize this reward
(including how rewards work - the reward doesn’t necessarily correspond to the
latest behavior).

If the reward provided corresponds to the usefulness of predictions, this would
guide a reinforcement learning agent towards making useful predictions. However,
there is often more information available, which can make the reasoning task sim-
pler than in a pure reinforcement learning system. In this thesis we will consider
structured problem-solving tasks, where the system provides a solution for each
problem, and is scored according to the quality of the solution. In this case there is
a clear correspondence between problems, solutions, and scores. We will also pro-
vide additional information regarding the desired solutions, typically in the form
of providing answers to some of the problems.

There is nothing preventing a pure reinforcement learning agent from eventually
learning equivalent information through interaction with the environment, but it
can be expected that in practice these types of additional information are highly
beneficial and allow the system to learn more easily, faster, and produce more useful
results.

10

CHAPTER 2. BACKGROUND AND DESIGN PRINCIPLES

2.2 Effective machine learning

This thesis is about automatically learning to predict the unknown. Based on this
perspective, we categorize reasoning methods into three categories based on how
they learn:

• L0: Static predictors, which don’t change and always behave in the same
manner, without any learning. For example traditional expert systems with
hand-crafted rules would fall into this category.

• L1: Methods that build models from domain training data. For example
ID3 and many other hand-crafted machine learning algorithms belong to this
category. L1 methods can be viewed as creating and combining L0 static
predictors.

• L2: Methods that optimize learning based on observed system behavior. For
example neural networks trained through weight back-propagation and most
boosting algorithms belong to this category. Methods in this category are
typically based on using a significant amount of processing power to repeat-
edly apply iterative optimization steps a large number of times, guided by
checking the performance of the system at each step. L2 methods can be
viewed as creating and combining L1 model-learning methods.

The focus for this thesis is on systems that use L2 methods to combine problem
data, training data, and performance data when making predictions. The learning
scenario we use is as follows, from the perspective of the machine learning system:

• Receive a problem instance to predict a label for.

• Respond with a prediction within a given time limit.

• Receive a score based on how good the prediction was and the time taken to
produce it.

• Optionally, also receive a solution label for the problem instance.

• Repeat from the beginning for the next problem instance.

Solution labels are not necessarily immediately available before the next prob-
lem instance is received, as the labels may arrive later or not be available at all.

The goal here is to have a machine learning system learn during this process,
by repeatedly processing the problem instances, scores, and solution labels in a
cycle while the system is running. As long as this protocol is followed, a machine
learning system is free to decide how and when to train or update models based on
data seen so far, what methods to use, to synthesize new features or select feature
subsets to use, etc.

We use this scenario for evaluating such learning systems according to their ob-
served performance, based on two high-level dimensions which roughly correspond
to the benefit and cost of the system’s predictions:

11

2.2. EFFECTIVE MACHINE LEARNING

• Prediction accuracy. The machine learning system should make as accurate
predictions as possible. We measure this based on accumulated score received
over time.

• Computational speed. A machine learning system needs some resources in
order to run - for the experiments in this thesis we use a fixed hardware and
software platform and measure the time elapsed to make predictions.

 0

 0.1
 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8
 0.9

 1

Ac
cu

ra
cy

Average time spent per query

Figure 2.1: Accumulated score vs. computational requirements, with differ-
ent methods shown as circles. The dotted line in the graph shows the Pareto
frontier for these methods, i.e. the highest score that can be achieved for a
given cost.

An example of this is shown in figure 2.1, for an example scenario with 15
systems. Each of the points in the graph shows the results for a particular system,
based on accumulated score (average accuracy) and computational cost (average
milliseconds spent per problem). It is desirable to have as high accuracy as possible,
and as short running time as possible, which presents a trade-off. This forms
a Pareto frontier, consisting of the most efficient methods that have the highest
possible accuracy for any given running time (or equivalently lowest running time
for a given accuracy). The other methods are inefficient - either slower or producing
less accurate results than some method on the Pareto frontier.

If we had accurate numbers for each method, it would be relatively simple to
choose which method to employ based on the options on the Pareto frontier. In
practice we will only have noisy estimates of the accuracy and runtime, and the
real underlying values will change while the system is running (that is the point of
learning, after all).

12

CHAPTER 2. BACKGROUND AND DESIGN PRINCIPLES

2.3 Lazy and eager learning

Lazy and eager learning are two different machine learning paradigms, closely re-
lated to the trade-off between prediction accuracy and computational speed. Ea-
gerness and laziness in this machine learning sense refers to when generalization
takes place.

In lazy learning, generalizations are formed in the problem-solving phase, when
the specific problem instance to solve is already known. This is the most general
paradigm, and allows the most possible information to be used for generalization.
The advantage is that the solution can be focused around the specific problem
at hand, for example only generalizing based on the local situation and the most
similar previous experience. This can be simpler and produce better results than
generalizing across the entire domain at once.

However, laziness has a cost. As discussed, the utility of a reasoning system
can be expressed as the benefit it brings, minus the costs associated with the
system. The ”utility problem for lazy learners” [20] occurs when the addition of
more information to the system increases the costs more than the benefit it brings,
thus reducing utility. In theory this will always occur in a fully lazy system that
gains more experience and generalizes from all of it, as the additional experience
will take more time to process, and this increase in time will eventually outweigh
any utility the extra information can bring. In practice, the incremental cost from
adding more information is usually not important [48], but learning is typically
relatively costly so re-learning from scratch for every problem instance means that
the set of viable methods is limited to just very fast ones.

The alternative, eager learning, is the most popular form of machine learning.
This paradigm uses an alternative mode of operation by generalizing to train a
model of the domain before the problem instance is known. While this means less
information is available during generalization, the important advantage is that be-
cause it doesn’t depend on the input problem, the training phase can be performed
just once ahead of time, and reused for all future problem instances. This approach
is less sensitive to the training time and allows slower generalization methods to
be used, as the cost of training can be amortized over a large number of problem
instances. To solve a problem only requires applying the already-trained model,
which can be highly optimized and significantly faster than learning from the train-
ing data.

2.4 Metareasoning architectures

The existence of different learning paradigms and the abundance of machine learn-
ing methods available suggests that there is no single particular learning method
that is universally applicable and useful in all cases, but instead a variety of meth-
ods with varying performance across different domains. As is often the case in
machine learning, ”it depends” is usually an appropriate answer when abstractly
asking whether a method or approach is good or bad.

13

2.4. METAREASONING ARCHITECTURES

However, limiting the problem domains to ones that can be addressed in a
practical and efficient manner actually narrows the number of viable methods sig-
nificantly. When given a concrete task, all methods produce actual measurable and
comparable results. And if there is no known way to achieve good results for a
given domain with a given approach, then it is currently not practically useful.

Even with this restriction, there is still a multitude of machine learning methods,
and no approach that is clearly the best in every situation. Metareasoning provides
a way to address this: by reasoning about the learning methods in the context of a
specific domain, we can pick the methods that perform well in the specific domain
the system is addressing. Metareasoning architectures do this automatically - they
allow the learning process to be dynamically adapted to the domain.

Figure 2.2: Duality in reasoning and acting [15], a high-level framework for
describing metareasoning processes.

There is a rich variety of results related to metareasoning from different research
fields, with sometimes overlapping and contradictory definitions and approaches.
Cox and Raja [15] presented a general high-level framework for analyzing metar-
easoning systems, which is illustrated in figure 2.2. This framework describes such
systems on three levels and the relations between them: the ground level (physical
perception and action), the object level (reasoning about action), and the meta-
level (reasoning about reasoning).

Another perspective is that metalearning is about choosing the correct learning
bias [46] - some inductive bias is needed to generalize beyond training examples,
and in this view the role of meta-learning is to dynamically shift this bias to achieve
better results.

We use both these perspectives to examine three main groups of metareasoning
approaches based on how they operate on the meta-level:

• Section 2.4.1: Using meta-knowledge to select an appropriate learning method.
A typical example would be to identify a set of important data set characteris-
tics, e.g. training set size and whether features are categorical or continuous,
and using rules based on these values to select an algorithm. This form of
meta-reasoning determines a bias per dataset based on assumptions about

14

CHAPTER 2. BACKGROUND AND DESIGN PRINCIPLES

what is likely or unlikely to work. The bias is set before training begins, and
does not change at run-time.

• Section 2.4.2: Identifying and correcting problems [16, 36]. In this case we
do not try to determine which methods will perform well ahead of time, but
instead notice and react when a method runs into problems: e.g. a generated
solution doesn’t actually fit within the width and height specified in the
problem, or uses too many steps to reach a goal. This form of metareasoning
can be seen as changing the bias of the underlying base-reasoner at run-time
when a failure pattern is triggered.

• Section 2.4.3: Iteratively optimizing generalization performance [11, 34, 50,
45]. Here we might not know anything about the data set or what process
should be followed, but use a meta-level algorithm to learn what methods
empirically increase generalization accuracy. This form of meta-reasoning
can be seen as continually changing the bias of the underlying base-reasoner
at run-time, based on empirical performance. Our thesis work uses this ap-
proach, which supports continuous learning and improvement without relying
on human experts.

2.4.1 Data set meta-knowledge

This is perhaps the simplest metareasoning approach, based on classifying data
sets. The data set metadata (e.g. number of training instances, number of features,
categorical vs. numerical features, etc.) is used as input, and the output is a class
corresponding to the prediction algorithm and hyperparameters to use for this data
set. The metareasoning function from metadata to algorithms can e.g. be learned
using a standard object-level multiclass classifier, trained on a collection of previous
data sets and the performance the algorithms had on those data sets.

This type of metareasoning is analogous to how a human might analyze a prob-
lem domain, e.g. deciding whether a linear learner is applicable, or that a simple
model with few parameters should be used to avoid overfitting because very little
training data is available. This metareasoning approach can improve the results by
initially choosing to use a better method, but would not autonomously continue to
increase accuracy at run-time.

2.4.2 Failure-driven learning

A popular direction for using metareasoning in lazy reasoning systems is to use
traces of object-level reasoner behavior as the meta-data [16]. These traces list
the steps of the process the object-level reasoner performs, and then some form of
meta-level control is used to detect and correct problems.

The most common form of such meta-level control is driven by reasoning fail-
ures, where an unexpected result is encountered while solving a problem. This
approach is based on the intuition that there is no reason to change the system if
it is performing as expected without any problems. A reasoning failure can e.g.
be arriving at an incorrect answer, producing an answer without evaluating the

15

2.5. MULTIPLE CLASSIFIER SYSTEMS

previous case that is most similar to that answer, or even lacking any method to
solve a certain kind of problem.

Adding this type of introspective error detection and triggering of repair actions
can improve the performance of an underlying reasoning system automatically,
even enabling the system to correctly solve problem instances that the underlying
reasoner could not solve on its own [19].

However, detecting failure, determining the reasons for it, and then correcting
them is a difficult process and a research problem in its own right. For a complicated
system, what constitutes a reasoning failure is not a simple well-defined yes/no
problem, and in practical systems will often be pre-determined by human experts.
For example, the implementation of Gila used failure patterns provided by the
author of the system, and investigating whether the patterns could be learnt from
experience was left as a possible line of future research [36].

2.4.3 Optimizing generalization performance

The core idea behind this metareasoning approach is to evaluate multiple different
potential methods, and choose or prioritize the one(s) that perform the best.

The processes used by humans when experimenting with different machine
learning methods can often be seen as a variation of this approach, e.g. selecting the
best-forming approach based on performance on a test set, or using cross-validation
to select the best parameters.

In the next sections we expand on this metareasoning approach, and specifi-
cally on meta-level methods that explicitly reason over multiple specific object-level
learning methods.

2.5 Multiple classifier systems

The idea of systematically combining multiple predictors to produce more accurate
composite predictions can be traced back at least to Laplace in the early 1800s,
and has been highly successful in practice in various fields [47, 13, 27].

Our focus is on methods for automatically learning higher-level combiners,
which we will refer to as multiple classifier systems, a generic term not connected
to any particular method. However there is significant overlap in terminology for
these types of systems from related fields:

• Cross-validation [31]: A procedure for training multiple instances of the same
method on different training and evaluation sets. This can be used to estimate
the accuracy for unknown data, and is often used to choose which learning
method to use or which parameter settings to use.

• Hybrid reasoning [6]: A generic term referring to combining learning methods
from different subfields. This includes the idea of combining heterogeneous
methods, which is often observed to perform better than homogeneous com-
binations.

16

CHAPTER 2. BACKGROUND AND DESIGN PRINCIPLES

• Hyperparameter optimization [18, 25, 5, 2, 44, 22]: Choosing the best pa-
rameters for a learning algorithm, with a focus on convergence speed and not
getting stuck in local optimums.

• Bayesian optimization [28, 40]: A meta-level method for hyperparameter op-
timization, based on Bayesian probability and sequential iterative improve-
ments. This approach is focused on minimizing the number of evaluations of
the underlying function.

• Stacking [50]: Wolpert argued for learning multiple levels of predictors, called
”stacking”, which in its most general form covers any form of combining
multiple levels of generalizers. However, as most commonly used the term
stacking refers to training a meta-level model, usually a regression model [7],
based on the outputs of object-level predictors.

• Ensemble learning [41]: Generating and combining multiple hypotheses us-
ing the same base learner. These types of methods typically have a strong
connection to the statistical machine learning community, and a similarity to
statistical ensembles.

• Portfolio selection [34]: Optimizing wealth across multiple assets, with a focus
on the trade-off between expected return and risk.

• Prediction with expert advice [11]: Minimizing regret compared to multiple
reference forecasters, with a focus on worst-case performance (adversarial
environments).

• Deep neural networks and neural architecture search [23, 14, 49, 17, 52, 35]:
Deep neural networks can be viewed as layers of simple generalizers on top
of each other, that are all tuned to work well together. This approach has
been highly successful on visual and image-recognition tasks, based on adding
repeated structure to the generalization process. In addition to automatic
feature engineering as part of training these networks, in recent years the
network structure has also started to be learned automatically, enabling state-
of-the-art performance without task-specific human expert tuning.

• Bayes optimal classifier: This classifier is a theoretical construct for obtaining
the best possible prediction which requires additional statistical knowledge
that is not available for most real-world data sets. AIXI [26] is a related
architecture that assigns priors to each hypothesis based on their complexity,
inspired by Occam’s razor. AIXI is still not computable in practice, but
approximations using restricted hypothesis classes can be implemented [45].

The purpose of metareasoning in this thesis is to achieve automatic machine
learning, often referred to as ”AutoML” (which is similarly also not clearly defined,
but generally refers to automatic machine learning without task-specific tuning or
design by human experts). As a topic and research interest, AutoML is most closely
associated with deep neural networks and neural architecture search, which typ-
ically involves specialized hardware and large amounts of eager pre-computation.

17

2.6. BANDIT ALGORITHMS

In contrast, the approach in this thesis is focused on incremental lazy learning and
highly-efficient methods that can run quickly on consumer hardware, and method-
ologically is most closely related to minimizing regret for prediction with expert
advice (though without human experts).

2.6 Bandit algorithms

As stated earlier, in reinforcement learning an agent attempts to maximize its
rewards from an environment that is not fully known. This creates two opposing
and contradictory goals: the agent should spend time performing the actions that
it expects will provide the greatest reward, but at the same time it should try
to learn more about the environment to make sure that the agent’s expectations
are correct and it is performing the correct actions. If new information from the
environment shows that another action would be more beneficial, the agent should
adapt its behavior. This is called the exploration-exploitation trade-off, as an agent
is typically not able to do both at the same time, and has to make a choice between
them. (E.g. to learn the effect of choosing option X over option Y, you actually
have to choose option X. If the agent is expecting option Y to perform better, this
exploration of option X incurs an expected loss, or regret.)

A famous problem exemplifying the exploration-exploitation trade-off is the
multi-armed bandit problem. In this problem a gambler can choose between many
different slot machines in a casino, where each machine has its own probability
distribution for what rewards it will produce. The problem is for a gambler to
choose which machines to play. In the traditional setting the gambler has no initial
knowledge of the machines, and can only learn about their reward distribution
by attempting to play them, which means not playing one of the other - possibly
better - machines. Solutions to this problem can be used to address many real-
world situations, from clinical trials [43] to internet advertising [12], where choosing
between multiple options with uncertain results can be modeled as choosing which
slot machine to play.

We will model the problem of selecting a learner in a multiple classifier system
as a bandit problem, with the different learning methods corresponding to different
slot machines.

2.6.1 Multi-armed bandit policies

A policy or strategy for the multi-armed bandit problem determines which slot
machine to play next, based on the current knowledge about the machines. These
choices are made incrementally for each new play in a lazy manner, and the strength
of different strategies can be compared based on the results they produce. In
particular we can measure the regret r that a policy produces after choosing a
machine to play T times. The regret is defined as the difference between the
rewards collected by a policy and the maximum possible rewards that could have
been achieved by knowing which machine is the best and always playing that one.

18

CHAPTER 2. BACKGROUND AND DESIGN PRINCIPLES

A policy where the fraction r/T tends to 0 when the number of times T tends
to infinity is said to be zero-regret, and is asymptotically optimal. This is a theoret-
ically desirable property, but can be difficult to prove, as zero-regret only describes
the theoretical behavior at the limit. There are simpler strategies that are not
known to be asymptotically optimal (or even known not to be optimal) but still
often produce better results for finite T when tuned appropriately [32].

2.6.2 Epsilon-based policies

A simple policy called epsilon-greedy plays the estimated best machine for ex-
ploitation most of the time, but with a low probability ε (epsilon) will instead
play a random machine for exploration. This is one of the simplest exploration-
exploitation trade-off policies, with decent performance in practice if the ε value is
tuned well for the specific task to be solved.

When the total number of trials Tmax available is known ahead of time, a
simple modification of this strategy can be made, called epsilon-first : We know
(on average) how many times the strategy will perform exploration: Tmax × ε.
The strategy can be improved by performing all this exploration up-front, i.e.
starting with Tmax × ε random plays, and then continually playing the estimated-
best machine afterwards. By reorganizing the steps to place all the exploration
steps at the beginning, all the information learned from exploration will be available
to every exploitation step.

Another approach using ε random machine plays is epsilon-decreasing, where ε
is not treated as a constant but instead varies over time. In the beginning, ε is high
to perform a large degree of exploration, similar to epsilon-first. Then over time
ε is lowered to focus comparatively more on exploitation when more information
about the alternatives has already been obtained.

2.6.3 UCB and UCT policies

The Upper Confidence Bound (UCB) policy [3] achieves the same gradual shift
from exploration to exploitation as epsilon-decreasing, but using a different under-
lying approach. Instead of trying to tune the right amount of random exploration
to perform, UCB uses statistical confidence bounds to determine which machine to
play each time, which incorporates exploitation and exploration in the same for-
mula. The formula used is always the same at every step and evaluated for every
machine, and the machine with the highest computed value is played next.

The formula used for UCB evaluation is split into two parts that are summed
together: the first part is the expected exploitation value, and the second part is an
optimistic estimate of the exploration value. The exploitation value is estimated
as the average value so far, while the exploration value is modified each time a
machine is played: the exploration value increases for a machine that does not
get played, and decreases for a machine that gets played. This happens quickly
in the beginning, and then slows down when the machine has been played more
and tighter confidence bounds can be determined. The exploration value is always
increasing without bound for a machine that does not get played, which means

19

2.6. BANDIT ALGORITHMS

that every machine will eventually get explored again, no matter how poorly it has
performed so far. However this will take longer and longer each time if the machine
continues to produce poor rewards, and a higher and higher fraction of the plays
will be spent exploiting the better-rewarding machines.

In practical experiments, an optimally tuned ε can often perform better than
UCB, especially if there are only a small number of machines and they all have
approximately similar expected rewards [32]. However, the optimal value for ε
varies significantly depending on the exact machine setup and the total number
of trials, and badly-tuned ε values perform poorly. In comparison UCB typically
always performs reasonably well.

The Upper Confidence Bounds applied to Trees (UCT) algorithm [30] is a gen-
eralization of UCB, which can be applied to general tree structures. The regular
flat row of slot machines can be considered as a simple tree with all the machines as
direct leaf nodes under the root, and in this scenario the UCT algorithm behaves
the same as the UCB algorithm. However, UCT also supports multi-level tree
structures with internal nodes - the UCB formula is used when deciding between
child nodes, an internal non-leaf node is chosen, and then the UCT algorithm is
applied again recursively to choose between that node’s children. To make this
work, the total number of plays as used in the UCB formula is adapted to instead
be the total number of plays for the parent node (giving the same result as UCB
for a tree with only one internal root node and all bandit machines as direct child
leaf nodes).

The UCT algorithm is particularly well-known for computer Go, where the use
of Monte Carlo tree-based exploration techniques ushered in a stronger generation
of Go-playing programs than the previous state-of-the-art expert systems [21, 10],
and was later used by the first computer player to beat professional human Go
players [39].

20

Chapter 3

Research summary

3.1 Research process overview

The primary topic of my thesis research was on systems that reason about them-
selves and learn, within the context of case-based and model-based reasoning in
our research group. Based on initially examining relevant literature in the CBR
and machine learning fields, my focus narrowed towards meta-level learning in in-
trospective reasoning systems, and a specific approach to how these metareasoning
tasks should be performed.

3.1.1 Main research phases

Phase I of this research was to study relevant literature and determine which el-
ements were most important for learning. This started with the CBR cycle, and
initially looking at the Retain step as the focus of learning since that is the part
that changes the long-term state of the system. However, based on existing lit-
erature and experience gained while investigating and experimenting, it became
clear that the goals of the Retain step should not be optimized in isolation, but
instead be optimized based on how retained cases will be used by the Retrieve step
in the following cycle. The Retrieve step should in turn be optimized based on
how retrieved cases will be used by the Reuse step, and so on. The overall con-
clusion of this first phase was that independently optimizing just one part of the
CBR cycle is insufficient and fundamentally unable to take full advantage of the
possible opportunities for learning, as what matters is the combined overall system
performance, i.e. how a set of methods work together.

Phase II of this research was to investigate how to improve the overall perfor-
mance of a system based on combining lazy and eager learning, in an attempt to
achieve the combined benefits of both. This was informed by the background from
phase one, with the goal being to improve the empirical results from an overall sys-
tem instead of individual components. The main takeaway from this work was that
the empirical results and evaluations should be for each specific reasoning scenario,
with a specific domain and set of requirements, and in particular including resource

21

3.2. PHASE I: LEARNING IN CASE-BASED REASONING

limitations which are the main reason to pursue eager learning methods. This re-
search phase was conducted together with the TLCPC (Transactional Research in
Lung Cancer and Palliative Care, Norwegian Research Foundation, contract no.
NFR-183362) project in my research group. My role in this work consisted of in-
vestigating learning approaches that could be used in computer-assisted decision
systems. The concrete outcome of this collaboration was that as I developed new
methods they could be applied to and evaluated on a data set of cancer patient
treatment, and resulted in co-authoring a paper with the other TLCPC participants
about high-level approaches for combining different learning approaches.

Phase III of this research was to propose a new approach to metareasoning
based on lazily optimizing and evaluating overall system performance: ALMA.
Implementing and testing ALMA had originally been intended as an item for future
work and not as a part of the thesis. To additionally include an empirical evaluation
of ALMA as part of the thesis required significant implementation work, and at this
point I was no longer working full-time on my research. I eventually completed this
phase after implementing 3 different generations of ALMA, with the final version
able to integrate with the WEKA reasoning system and work as a separate meta-
reasoning layer on top of it, which could then be used to evaluate many different
combinations of algorithms and data sets in a uniform manner.

3.2 Phase I: Learning in case-based reasoning

R
E

T
A

IN

Problem

General

Knowledge

Past

Cases

Suggested

Solution

REVISE

Tested/
Repaired
Case

Confirmed

Solution

Solved
Case

New
Case

New
Case

Retrieved
Case

Learned
Case

A
a
m

o
d

t&
P

la
z
a
 1

9
9

4

Figure 3.1: The case-based reasoning (CBR) cycle [1], illustrating the 4 major
”Re-” steps and how they interact with the case base.

22

CHAPTER 3. RESEARCH SUMMARY

The first phase of research was focused on learning within case-based reasoning
(CBR) systems, a type of lazy learning system that is a major focus in our research
group. This started by examining how the case base is updated, which is how
learning traditionally occurs in CBR systems. As shown in figure 3.1, problem-
solving in CBR occurs in a cycle, which proceeds through a number of steps and
then repeats from the beginning for the next problem query, after updating the
case base based on the first problem-solving experience. The exact steps in the
cycle can vary between implementations as there have been a number of additional
steps and alternatives proposed in the literature, but the basic and most common
cycle consists of four steps:

• Retrieve. One or more cases similar to the problem query are retrieved from
the case base.

• Reuse. The retrieved case(s) are processed and used to determine an answer
for the problem query.

• Revise. The solution is evaluated or tested in some form, and repaired if
needed.

• Retain. The case base is updated by adding the experience from this problem-
solving attempt to the case base.

A basic CBR system thus consists of a set of methods for these 4 ”Re-” steps,
including a representation format for storing past cases and general knowledge.
Learning occurs in the system at the end of each problem-solving cycle, based on
the method used in the Retain step to update the case base. Updating the case
base in this way after every problem-solving attempt is what allows a CBR system
to support sustained learning, which is an important feature of CBR systems.
Maintaining a growing case base by e.g. generalizing or deleting cases is in itself
an interesting research topic [37], but has so far not received as much attention as
the Retrieve step.

However, CBR systems also contain additional knowledge beyond the case base,
such as the case vocabulary, similarity knowledge, and adaptation knowledge [38].
This is often implicitly encoded in the methods used for the different ”Re” steps,
and not changed after the system has been developed. For example, similarity
knowledge is used during case retrieval, even if the similarity knowledge is never
represented explicitly and only encoded as part of an algorithm implementation.

Learning these other knowledge types is an important opportunity to improve
the system, but it is complicated by the fact that how good a particular method
is depends on what other methods are used in the other steps of the CBR cycle.
For example, to be most useful the Retrieve step should not retrieve the cases
from the case base that are most ”similar” in some purely abstract sense, but
more specifically cases that will be useful for the method used in the Reuse step to
determine an answer to the problem query. Similarly, the Retain step should not
be optimized in isolation based on e.g. measures of case base size and coverage,
but instead based on how it affects the rest of the system, starting with how it

23

3.2. PHASE I: LEARNING IN CASE-BASED REASONING

affects the method used in the Retrieve step that accesses the case base. In fact
”optimizing” e.g. the Retain step to score higher on a local Retain-specific metric
can hurt the overall performance of the system. This means the best method
to use depends on both the problem domain and also all the other parts of the
system. Which methods perform best can also potentially change after a CBR
system has been deployed, due to e.g. changing characteristics from a much larger
case base accumulated over time, or due to unforeseen shifts in the kind of problems
encountered.

Based on these results from examining learning in CBR, the research focus
changed from learning new domain knowledge in the Retain step to instead learn
multiple forms of system-level knowledge, and using this system-level knowledge
to determine full sets of methods that work well together to improve the overall
performance of the system as a whole. This also led to examining other forms
of learning, as the CBR cycle is not as well suited as a framework for examining
whole-system optimization.

3.2.1 Paper A: An Introspective Component-Based Approach
for Meta-Level Reasoning in Clinical Decision Support
Systems

This paper introduced an initial framework for creating reasoning systems with a
meta-level control component. All the different methods in the system are repre-
sented as components, which can be used directly or combined to form larger and
more powerful components. The role of the meta-level control component is to de-
cide which components should be used to create the system, by assigning individual
or combined components to each of the reasoning tasks required.

Component combinations in this case were based around task templates created
by a human expert. The primary example investigated was a CBR template (de-
scribed in the paper), where the tasks were exactly the 4 ”Re” steps and sub-tasks
associated with the 4 steps. The meta-level control component’s job was to select
the set of methods that would be used for these sub-tasks. The components for
this system were self-describing using a vocabulary introduced in the paper, with
specified inputs, outputs, pre-conditions and post-conditions that described when
each component could be used and what the result would be.

The meta-level control component used this metadata to reason about which
components could be concatenated together, and which components could be used
to perform tasks. The constraints on task assignments were specified as condi-
tions using the same vocabulary as the components, and based on problem domain
characteristics such as the size of the data set and the type of input data.

An initial version of this paper was discussed in the health workshop at ICCBR
2009 [24].

24

CHAPTER 3. RESEARCH SUMMARY

RQ1: This research provided a partial answer to research question 1: ”How
can learners perform better using introspective capabilities?”:
Introspective capabilities can be used to choose between alternatives at the
system level, i.e. not just learning domain-specific knowledge but additional
system-level knowledge types such as similarity knowledge and adaptation
knowledge.

The paper presented this framework in the context of clinical decision support
systems, with a goal of using these ideas as part of the TLCPC project in Phase II.
However the framework itself was more general, and could also be used for other
machine learning tasks.

An example implementation of this system architecture was implemented that
verified the constraints at compile-time when creating the system, and automati-
cally determined the right component that fits the requirements. However, human
expert input was required to choose between multiple valid component choices,
which in particular meant that the system’s expressiveness was limited regarding
what components could be combined automatically. For example, if the Retain
sub-tasks were not sufficiently constrained and there were 2 or more valid com-
ponent assignments, a human expert would have to manually provide additional
constraints to make the selection unambiguous. For small systems it was also possi-
ble for a meta-level component to explore all combinations of components, although
in general that would lead to an exponential number of attempts required.

This implementation worked overall for a simple set of example components,
but was not fully satisfactory as it required significant human expert annotations
both for the methods used in the system and also for each new problem domain
to be addressed. The same high-level framework was reused later in Phase III,
but with a new metareasoning component that addressed this shortcoming by fully
automatically exploring the space of valid component assignments.

3.2.2 Paper B: The Utility Problem for Lazy Learners - To-
wards a Non-eager Approach

This paper examined how to evaluate the usefulness of reasoning systems, based
on a new General System Utility measure that combined the accuracy of generated
solutions, the time it takes the system to solve a problem, the usability of the
system for human operators, and the costs associated with developing, running
and maintaining the system.

The focus of the paper is on lazy learners, particularly advocating for retaining
more laziness when creating new systems instead of eagerly optimizing parts of the
system to achieve lower resource usage. This was based on two main reasons:

• From a perspective of leaving more possibilities open for a metareasoner to
take advantage of, it is generally undesirable to eagerly commit to decisions
that are not certain to be correct and remain correct forever (i.e., most deci-
sions).

25

3.3. PHASE II: PERFORMANCE/COST TRADE-OFF IN SPECIFIC
SCENARIOS

• Based on evaluating the full overall usefulness of the system, the positive
impact of these kinds of eager optimizations are usually small. There is a sig-
nificant chance of a more significant negative impact, the simplest example
being that implementing them increases development costs which are typi-
cally much larger than hardware costs for CBR systems.

RQ2: This research provided a partial answer to research question 2: ”How can
the performance of reasoning systems with different capabilities be evaluated?”:
Reasoning systems can be compared based on the overall empirical usefulness
they provide when used in specific problem-solving scenarios. This can vary
greatly based on both the problem domain and what requirements the system
has to run under. Generally, it can be expressed as the benefit the system
brings when run, minus the costs associated with the system.

In the paper, several different forms of systems are used to illustrate different
trade-offs, with the main point being that the correct decision can vary greatly
based on different algorithm choices. This was in contrast to various pieces of
advice and rules-of-thumb presented in other papers, which did not consistently
replicate when attempting to implement them for the metareasoning system. In
particular the paper illustrated realistic scenarios where eagerly limiting the case
base size, eagerly creating case index structures, and eagerly applying complex case
base maintenance methods were all harmful to overall system performance, even
without considering development costs.

The paper also highlighted several methods from the literature that combine
lazy and eager learning, as examples of better ways to speed up lazy learning.
This approach is revisited in Phase II, where new methods were developed that
combined lazy and eager learning to produce results very quickly.

3.3 Phase II: Performance/cost trade-off in spe-
cific scenarios

The next phase of research examined and experimented with various methods and
approaches to improve results on a data set related to TLCPC (Translational Re-
search in Lung Cancer and Palliative Care), a project in our research group aimed
at improving palliative care for lung cancer patients. TLCPC’s goals included
examining the role of computer-assisted decision systems by developing a new pro-
totype decision support system. The TLCPC project was closely connected to
EPCRC, a larger EU project with a broader scope covering all types of cancer and
many other research goals, which involved medical research teams from multiple
countries.

Part of this work included examining a palliative care dataset consisting of 55
features including self-reported pain, medical doses administered, and other mea-
surements. The data was collected for 1486 patients, with feature values reported
for the first 3 weeks of treatment for each patient. To use this data set for investi-
gating learning algorithms, a concrete reasoning task was devised which consisted

26

CHAPTER 3. RESEARCH SUMMARY

of predicting the self-reported pain in the 3rd week based on the observed data in
the first 2 weeks. The idea was that if there were a model that could predict pain in
this manner, a decision support system could use the observed values from the first
2 weeks for a patient and display the predicted 3rd week pain for different possible
dosages, helping the clinician decide how much medicine should be administered.
The intention here was to identify a potentially valuable example reasoning task
that could then be used to guide methodological machine learning research, not to
actually develop a system that would be used by clinicians.

This reasoning task was used to investigate a new approach for using eager
learning to speed up lazy learning CBR systems. This approach was inspired by
the results from Phase I, specifically to avoid destructive eager case base mainte-
nance. As the beneficial properties of case base maintenance can always be achieved
in a more lazy manner by performing them in the next cycle’s Retrieve step instead
(when the next query is already known), the main theoretical benefit of perform-
ing maintenance ahead of time is to reduce the computational cost and time of the
Retrieve step. To address this, a new and highly efficient RDT (Random Deci-
sion Tree) similarity measure was developed, allowing larger case bases to be used
while still performing a full match against all previously seen cases. The basic idea
was to eagerly prepopulate a caching data structure that allowed smaller problem
characterizations to be compared instead of the full cases. The problem characteri-
zation was automatically created to approximate a normal similarity computation,
compared to traditional systems where this is usually a manual process.

In experiments, the RDT method was significantly faster and achieved better
results than a full similarity comparison using a manually created problem char-
acterization based on expert domain knowledge about the most relevant features
specifically for pain classification. The best (but slowest) results were achieved with
a hybrid approach combining both the RDT method and the expert knowledge, by
using RDT to determine ”overall similarity” between cases, but only considering
those cases with the most similar expert problem characterizations. These better
results from the hybrid method were at a cost of ten times slower execution, un-
fortunately losing one of the main benefits of the RDT method in the first place
and highlighting the importance of considering computational costs.

These experimental results reinforced the previous results from Phase I, that the
usefulness of different methods is highly dependent on the specific problem-solving
scenario they’re used in, and therefore providing good results in all scenarios is
likely to require a diverse set of methods with different advantages and drawbacks.
Based on this the research focus returned to the metareasoner idea, with a goal to
make it fully automatic without the need for human expert analysis of methods
and domain for each new situation.

3.3.1 Paper C: An Efficient Random Decision Tree Algo-
rithm for Case-Based Reasoning Systems

This paper describes a new highly efficient random decision tree (RDT) similarity
algorithm for CBR. The method is based on initially creating a set of random

27

3.3. PHASE II: PERFORMANCE/COST TRADE-OFF IN SPECIFIC
SCENARIOS

decision trees, and computing similarity between two cases based on how many
of the trees classify them in the same way. This is implemented with an eagerly
computed data structure that stores a compact signature for each case, which can
be used to very efficiently compute the similarity between two cases from just
their signatures. New cases can be incrementally added to the data structure by
computing and storing their signature.

This similarity measure was inspired by kd-trees [4] used in case-based reason-
ing systems, and the Random Forest classifier which creates a similar set of trees
(but constructed differently) and can also compute similarity based on the tree
classifications. The main advantage of the RDT method is that it can be imple-
mented very efficiently, as the trees can be constructed before observing the full
data set and new cases can be incrementally added one by one.

The RDT algorithm is compared to and combined with an expert-defined sim-
ilarity measure on the palliative care dataset (computed lazily by comparing the
most relevant case attributes), as well as a baseline uninformative random simi-
larity measure. Experimentally, the RDT algorithm resulted in better predictions
than the expert-defined similarity measure, and was significantly faster. The best
(but slowest) predictions came from a hybrid combination using both the RDT
algorithm and expert-defined similarity.

In this paper, the usefulness of different algorithms was compared not just based
on their internal parameters, but also based on the externally observable prediction
accuracy (as the benefit) vs. the computational run-time required (cost). This is
a refinement and specialization of the usefulness evaluation described in Paper B.
Together these two dimensions provide a solid basis for estimating usefulness in a
concrete problem-solving situation, for a specific domain and running on specific
available software and hardware.

RQ3: This research provided a partial answer to research question 3: ”How
can a lazy metareasoning architecture take advantage of introspective capabili-
ties?”:
Reasoning methods have different performance curves, which can be empiri-
cally measured in an algorithm-agnostic way based on their predictive accuracy
and run-time cost in a specific reasoning scenario. Through introspection, a
metareasoning system can access and react to this performance meta-data, and
use it to optimize the choice of method based on how well it is performing.

3.3.2 Paper D: An Efficient Hybrid Classification Algorithm
- an Example from Palliative Care

This paper describes a procedure to directly build a classification method based
on RDT instead of a similarity measure as in Paper C. A benefit of addressing
classification directly is that predicting patient pain is closer to what would be
useful in a palliative care application, instead of only detecting similar patients.

In this paper, RDT was used to compute a weighted average of pain values
instead of as a similarity measure. This weighted average performed better than a

28

CHAPTER 3. RESEARCH SUMMARY

simple unweighted average, but not as well as the expert-defined similarity measure
(with an appropriately tuned k value). A combination of RDT and the expert-
defined similarity performed best, as in paper C. However the results from the two
papers are not directly comparable, as the RDT algorithm was used in a different
way and the generalization error was computed differently.

Only the most representative results were presented in paper C and D, but
at this point there were a number of possible options for how to use RDT and
how to combine it with other algorithms. Particularly the results in paper D were
achieved through manual trial and error to find what worked well specifically for
the palliative care domain. The selected combination even for this relatively small
task relied on human expert knowledge, and would not necessarily be appropriate
for tasks in other domains.

RQ3: This research provided a partial answer to research question 3: ”How
can a lazy metareasoning architecture take advantage of introspective capabili-
ties?”:
There are a large number of possible reasoning methods, meta-algorithms to
combine them, and possible hyperparameter settings that affect the perfor-
mance. Which methods perform best depends on the domain and the task to
be solved.
A metareasoning system can use performance meta-data to determine which
methods should be used, allowing optimization for specific domains without
requiring a human machine learning expert to be involved.

3.3.3 Paper E: A hybrid metareasoning architecture com-
bining case-based reasoning and Bayesian networks

This paper was a collaboration in the TLCPC research group to summarize the cur-
rent state of our research. The focus was on two different types of uncertainty that
are present in machine learning tasks, and how methods with different strengths
and weaknesses can potentially be combined in a hybrid system to address both
types of uncertainty.

The first type of uncertainty is aleatoric uncertainty, which refers to events
having a certain probability of happening given the right conditions. I.e. this refers
to the stochastic nature within the domain itself, and the relationships between
domain variables not being deterministic predictors in the actual observed data.
As a simple example, the height of humans in the world varies, and this height
probability distribution also varies based on other characteristics, e.g. age and sex.
The proposal in the paper was that Bayesian networks provide a solid foundation
for representing and reasoning about aleatoric uncertainty, using a directed acyclic
graph to express conditional probabilities and a sound inference engine to update
beliefs when presented with new evidence.

The second type of uncertainty is epistemic uncertainty, which refers to an
incomplete understanding of the domain itself, e.g. incorrect beliefs about a causal
relationship. This uncertainty is not an intrinsic part of the nature of the domain,

29

3.3. PHASE II: PERFORMANCE/COST TRADE-OFF IN SPECIFIC
SCENARIOS

but instead reflects incomplete human knowledge. An example of this is leaving
out important characteristics or misunderstanding their effect, e.g. modeling the
human height distribution without taking age into account. A Bayesian network
would still be able to ”correctly” model the relationship, in that it could reflect the
statistical relationships between variables that are included in the model. But it
would not be a satisfactory explanation of human height variation. The proposal
in the paper was that CBR using local models is well-suited to handle situations
with high epistemic uncertainty. In contrast to building out a full detailed model
of the domain, CBR methods can be more easily used to capture individual pieces
of expert knowledge that can be reused if similar problems re-occur in the future.

The paper outlined 4 sequential combinations for integrating BN and CBR,
based on an earlier paper [9]. 3 of these combinations involve using a first method
to process the original input and generate a new modified input set that is used
as input for the second method. The 4th combination involved using an initial
CBR method to select between multiple different BN models, and applying the BN
model that was picked to the problem.

Finally, the paper outlined a metareasoning approach to combining BN and
CBR, inspired by ideas from Phase I of this thesis research work. The idea was that
for a new domain, there would initially be a high degree of epistemic uncertainty. At
the beginning, a selection of hand-crafted cases could be created by domain experts,
that represent a set of prototypical problems and solutions. Using these cases with
a CBR method, the system could provide acceptable answers for new problems that
were close enough to these existing prototypical cases. Then over time, as more and
more problem cases were collected and answered, the epistemic uncertainty about
the domain would decrease, as the new cases provide more information about the
domain that can be learned from and used to construct better models. A separate
BN model would be trained based on these cases, providing a more accurate model
of the domain and better solutions over time as the training set becomes larger.

The expected behavior was for the CBR method to provide a constant base
level performance, while the BN model would perform significantly worse in the
beginning, but eventually improve and continue to get better and better. By em-
pirically evaluating the answers provided by the two approaches, a metareasoning
control agent could start by using the prediction from the CBR method initially,
detect when the answers from the BN model surpassed those produced by the CBR
method, and from then on use the predictions from the BN model.

RQ4: This research provided a partial answer to research question 4: ”How
can a practical metareasoning system automatically adapt to application-specific
characteristics?”:
The metareasoning system can evaluate the performance of different methods
for the specific application, and prefer the method with the best empirical
performance.

30

CHAPTER 3. RESEARCH SUMMARY

3.4 Phase III: Autonomous self-optimizing learn-
ing systems

The last phase of this research included creating ALMA, a lazy metalearning ar-
chitecture based on the research experience from the previous phases. The overall
structure is based on the component-based meta-level reasoning concept from Phase
I, but with a new fully automatic metareasoner that doesn’t require human expert
annotations for the different methods or the domain. This metareasoner is based
on the results from Phase II, and chooses which components to use entirely based
on empirical results that were previously observed for the same specific reasoning
scenario where the system is used.

Creating this metareasoner component started by first investigating how metar-
easoning was being used in CBR systems. The most popular approach was identi-
fied as adding a new meta-level control agent that monitors what is happening in
the system, detects when something is not working as desired, and then initiates
corrective actions to rectify the situation. In practice there’s usually a small set
of detection and correction methods that have been explicitly implemented by the
system developers, and each of the methods only applies to one targeted part of
each individual problem-solving experience. This general approach is implemented
in different ways, e.g. based on examining collected traces that record the reasoning
steps taken when solving a problem, or by detecting that there’s no viable method
available that can make further progress for a given problem-solving attempt.

What these popular CBR metareasoning approaches share is that they’re fo-
cused on using metareasoning to fix problems that occur while solving problems,
i.e. they could also be described as meta problem-solving. While a meta problem-
solving component would be valuable in ALMA, at this stage of the research the
goal was instead to apply metareasoning to the learning methods, i.e. metalearning
in the sense of learning to learn.

For a reasoning system to learn from a problem-solving experience necessar-
ily means that the system has to change in some way, to be different than how
the system was before the experience. To more clearly define the metalearning
problem and separate it from metareasoning that doesn’t involve learning, a new
framework for describing the changes that occur in a reasoning system was cre-
ated. The framework identifies 3 different levels of changes that are important for
a metalearning system (as described in section 2.2):

L0: Static non-learning reasoning methods (no changes).

L1: Learning algorithms (change based on domain data).

L2: Metalearning algorithms (change based on system performance data).

Using this classification, even some advanced meta problem-solving would only
be L0 if it doesn’t result in learning anything that persists after the specific problem-
solving experience, while very simple and basic tuning based on validation set
performance would be L2. In this way L2 is decidedly different from other terms

31

3.4. PHASE III: AUTONOMOUS SELF-OPTIMIZING LEARNING SYSTEMS

such as ”metareasoning” or ”intelligence”, but it expresses exactly the type of
learning methods needed for the desired metalearning component: introspective
methods that learn and change based on how the system is performing, not just
from domain training data.

L1 methods can also be described as methods that have a static bias, i.e. they
will learn the same model for a given data set. L2 methods on the other hand have
a dynamic bias, and can adapt how a model is formed from training data based on
how well it performs. These terms do have substantial overlap, but traditionally
the exact meaning of ”static bias” and ”dynamic bias” and the difference between
them has not been as clearly defined, while reasoning methods can be precisely
classified as L0, L1, or L2.

These concepts do not just apply to case-based reasoning, and in fact such L2

learning should ideally be able to choose between CBR methods or other machine
learning methods based on how suitable they are for any given situation. How
suitable a method is can here be seen as how well its inductive bias matches the
unknown underlying structure in the domain data. All machine learning methods
need some bias to generalize from observed to unobserved data, and the difference
in predictive accuracy between different methods when trained on the same data
comes from differences in inductive bias.

To try to gain new knowledge of learning algorithms and understand their
inductive bias, researchers often investigate and make broad claims, for example
that a certain algorithm is well-suited or poorly-suited to deal with sparse data.
One approach to finding a suitable machine learning method is to characterize a
large number of methods in this way, e.g. how they work for sparse data, real-
valued data, a large number of attributes, a large data set, etc. Then to select a
method for a new domain, these characteristics are determined for the available
domain data, and a learning method is chosen that matches these characteristics
and therefore is expected to work well for the domain (as described in section 2.4.1).
This was the approach planned for the metareasoning component in Phase I, using
a vocabulary of such characteristics to describe when each component could be
used.

However, for a fully automatic reasoning system there are two large drawbacks
to using these types of characterizations to make decisions: First, generating these
characterizations requires a large manual effort by human experts, which limits the
usefulness in new scenarios. Second, these characterizations are typically very gen-
eral, outlining what to expect in broad strokes. But the actual generalizations and
predictions made by a method depend on minute details of its inductive bias, e.g.
even just different random initializations or training for a longer time will result in
differences in exactly what the resulting inductive bias is. While general character-
izations can aid understanding, to get the best performance for a specific domain
human experts usually have to try several different variations and iteratively tune
parameters based on empirical results.

In ALMA, metareasoning is based on this latter approach: iteratively trying
and tuning different variations to optimize observed empirical results (as described
in section 2.4.3). The overall component-based architecture from Phase I is used,

32

CHAPTER 3. RESEARCH SUMMARY

together with a new metareasoning component that optimizes performance accord-
ing to the predictive accuracy and run-time cost from Phase II. This combination
can perform learning at the metalevel without any special human annotations for
the methods nor the domain, and achieves a lazier form of metareasoning where
the system continuously adapts at runtime.

Reasoning in ALMA is not limited to CBR methods, and the overall goal for
ALMA is to only choose to use CBR or any other methods when they demonstrably
work well for a given scenario. Using more diverse types of reasoning methods
and data sets was also desirable to better evaluate ALMA’s performance, and
necessary in practice to have enough methods and dataset combinations available
for a meaningful empirical evaluation of the research.

The focus in ALMA is on the L2 metareasoning components, and in particular
the method used to select which components to use. To avoid having to examine a
combinatorial explosion of possibilities, the selection method is based on the UCT
algorithm for balancing exploration and exploitation. Trying a new component to
gain more knowledge about it is modeled as ”exploration”, and using the presumed
best component combination found so far as ”exploitation”. The algorithms used
in ALMA’s L2 components are more closely related to ensemble learning systems
and hyperparameter optimization than case-based reasoning, while the overall ar-
chitecture and learning paradigm is based on lazy learning.

3.4.1 Paper F: A Learning System based on Lazy Metarea-
soning

This paper presents ALMA, the autonomous metalearning architecture developed
in Phase III. The goal of ALMA is to be able to automatically perform domain-
specific optimizations with no additional pre-specified task metadata or prior knowl-
edge of the domain. ALMA is focused on cost-effective prioritization and can run
in resource-constrained scenarios. This means that ALMA can be used to solve a
novel data set while running on a regular personal computer, without any special
hardware, manual tuning, or expert knowledge.

The paper introduces the lazy online learning paradigm used in ALMA, the
L0, L1, and L2 layers, and how components are chosen based on a node hierarchy.
For each new problem query, ALMA creates a learning system to address it, and
uses this learning system and the previously seen data to predict an answer for the
problem query. This approach is compared and contrasted with other metareason-
ing systems and related methods and algorithms from other artificial intelligence
sub-fields. Three novel L2 components are introduced in the paper:

• The UCT-based child node selection method used to choose between compo-
nents based on empirical results.

• A caching component for reusing previously trained models to efficiently ap-
proximate the output of a newly-trained model.

• An example parameter-tuning component that is suitable for selecting a small
integer parameter, e.g. the k parameter for k-NN.

33

3.4. PHASE III: AUTONOMOUS SELF-OPTIMIZING LEARNING SYSTEMS

The node selection method is the core metareasoning component in ALMA,
which is used to create the per-problem learning systems by choosing components
based on their previous performance. The node selection method learns at the
meta-level based on the observed empirical system performance when using each
component, while individual learning methods learn from domain data as more
problem queries and solutions become available. The caching component is required
to achieve acceptable performance when using eager learning methods that are slow
to train, as otherwise they would need to retrain the model for every single problem
query which can be very slow. The parameter-tuning component is not used in the
comparison experiments, to ensure the results are directly comparable by always
using the default method parameters as specified in WEKA.

In experiments using ALMA with the reasoning methods available in WEKA
as components, ALMA performed better overall than any individual reasoning
method and better than the existing meta-level multi-reasoner methods in WEKA.

RQ4: This research provided a partial answer to research question 4: ”How
can a practical metareasoning system automatically adapt to application-specific
characteristics?”:
ALMA is a full working example of a lazy metareasoning architecture that is
able to perform automatic domain-specific optimizations, by using introspec-
tion to monitor and adapt to the performance of different reasoning components
for the given domain and reasoning constraints.

34

Chapter 4

Evaluation and discussion

Breiman [8] described two different cultures for approaching the problem of reach-
ing conclusions from data. The first is the data modeling culture, which assumes
a given form of underlying process is generating the data. Given this assumption,
practitioners choose a model that is suitable for this type of process, use the ob-
served data to fit the parameters of this model, verify that the model appears to
work as intended, and then are able to make theoretically justified predictions and
explain how the domain works based on this model.

The other culture is the algorithmic modeling culture, which focuses on achiev-
ing the best accuracy. No particular form of underlying process is assumed, and in
particular a high predictive accuracy simply means that the model is a useful tool
for making predictions, not that the model explains the domain.

We believe this second approach is better suited for evaluating the overall ef-
fectiveness of fully automatic reasoning systems, and consider the ALMA system
successful primarily because it empirically improved performance while controlling
for CPU time spent.

This chapter evaluates the characteristics of the methods developed during this
research, but the evidence that the methods also really work in practice is in the
empirical results that were achieved.

4.1 Research questions and contributions

[RQ1] How can learners perform better using introspective capabilities?

From paper A summary: ”Introspective capabilities can be used to choose be-
tween alternatives at the system level, i.e. not just learning domain-specific
knowledge but additional system-level knowledge types such as similarity knowl-
edge and adaptation knowledge.”

Machine learning fundamentally relies on data and introspection provides addi-
tional data, allowing a system to learn more. This additional data is of a different
form, not providing new insights about the domain but instead about the reasoning

35

4.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

system itself. This insight allows automatically learning entirely different types of
knowledge, e.g. similarity or adaptation knowledge for a CBR system.

[RQ2] How can the performance of reasoning systems with different
capabilities be evaluated?

From paper B summary: ”Reasoning systems can be compared based on the
overall empirical usefulness they provide when used in specific problem-solving
scenarios. This can vary greatly based on both the problem domain and what
requirements the system has to run under. Generally, it can be expressed as
the benefit the system brings when run, minus the costs associated with the
system.”

Machine learning methods have different strengths and weaknesses, and there is
no universally best method that is always preferable. Even theoretical results
about generalization performance typically rely on assumptions that do not hold
perfectly in practice, e.g. that data samples behave as independent and identically
distributed random variables.

However, comparing empirical performance is relatively straight-forward, even
when the empirical results are produced through wildly different processes. Of
course this does not in any way solve the general problem, as these results may
not be reproducible, or may not generalize beyond the specific observations. But
it does provide a means to make informed decisions in a given specific situation.

This kind of performance could be based on how well the system satisfies busi-
ness needs in a given environment. In our research work this is modeled as the
number of correct predictions, evaluated across a range of different scenarios with
different resource constraints.

[RQ3] How can a lazy metareasoning architecture take advantage of
introspective capabilities?

From paper C summary: ”Reasoning methods have different empirical perfor-
mance curves, which can be empirically measured in an algorithm-agnostic way
based on their predictive accuracy and run-time cost in a specific reasoning sce-
nario. Through introspection, a metareasoning system can access and react to
this performance meta-data, and use it to optimize the choice of method based
on how well it is performing.”

From paper D summary: ”There are a large number of possible reasoning meth-
ods, meta-algorithms to combine them, and possible hyperparameter settings
that affect the performance. Which methods perform best depends on the do-
main and the task to be solved. A metareasoning system can use performance
meta-data to determine which methods should be used, allowing optimization
for specific domains without requiring a human machine learning expert to be
involved.”

36

CHAPTER 4. EVALUATION AND DISCUSSION

A metareasoning system can use introspective capabilities to extract perfor-
mance meta-data, which in turn can be used to make provisional decisions about
what methods and parameters to choose. By experimentally modifying and then
evaluating the system based on performance meta-data, a meta-level learner can
determine which changes are effective and should be kept, and which changes are
unhelpful and should be reverted, thereby optimizing system performance over
time.

In a lazy metareasoning system this performance meta-data can be incremen-
tally collected during execution and the decisions made just-in-time when needed,
which enables sustained meta-level learning at run-time after a system has been
deployed.

[RQ4] How can a practical metareasoning system automatically adapt
to application-specific characteristics?

From paper E summary: ”The metareasoning system can evaluate the perfor-
mance of different methods for the specific application, and prefer the method
with the best empirical performance.”

From paper F summary: ”ALMA is a full working example of a lazy metarea-
soning architecture that’s able to perform automatic domain-specific optimiza-
tions, by using introspection to monitor and adapt to the performance of dif-
ferent reasoning components for the given domain and reasoning constraints.”

Generalizing beyond training examples is not theoretically justified in the ”gen-
eral case” without making any assumptions, but it demonstrably works very well
for a wide range of practically important real-world applications. There are theo-
retical reasons for this, as in the mathematical ”general case” an arbitrarily chosen
situation will be extremely complicated and chaotic, while in situations of real-
world importance this is rarely the case as there will typically be a large degree
of some form of inherent structure (even if nothing about this structure is known
a priori, and it must all be learned from data - the important part is that some
structure exists).

For a practical reasoning system dealing with a specific task in a given domain
this is mostly a non-issue, as learning from training data precisely means to learn
new knowledge that is inherently connected to the specific domain. To perform well,
it is important that such a system is able to adapt as needed, meaning that general
knowledge and rules-of-thumb can provide an initial bias for the reasoning process,
but should not present artificial restrictions that preclude certain knowledge from
being learned. This means that the parameters of a machine learning model should
not be fixed as static domain-independent default values ahead of time, but should
be learned. Preferably the machine learning model structure itself should also be
adaptable, adjusting to the needs of the specific reasoning task.

A lazy metareasoning system can take advantage of introspective capabilities to
automatically adjust parameters and method combinations based on performance

37

4.2. RANDOM DECISION TREE ALGORITHM

meta-data. This allows a system to incrementally learn and iteratively explore the
decision space based on the most promising results seen so far. To work well in
practice, such a metareasoner should be able to integrate with other systems to take
advantage of the vast variety of existing machine learning methods and technology
that already exist, and automatically extend the full optimization and exploration
functionality of the system.

This can be achieved through a uniform representation of the various parts of
the system that can be understood and modified by generic meta-level operations,
as demonstrated by the component-based approach and meta-level components
used in ALMA that successfully integrates with reasoning method implementations
provided by WEKA.

4.2 Random decision tree algorithm

The new RDT algorithm from paper C and D was effective in producing similar-
ity estimates very efficiently, and research showed benefits from hybrid learning
systems that use multiple methods. However the trees produced by the RDT al-
gorithm were not sufficient to create a strong classification algorithm directly from
data.

In additional exploratory research, the trees were assigned randomized impor-
tance weights, which were sequentially iterated upon whenever a new set of weights
improved the observed empirical results. This approach showed an initial improve-
ment over the basic unweighted trees, but ended up quickly getting stuck with
locally optimal weights that were harder and harder to improve further. Overall
this random approach to setting weights did not manage to fit the training data as
well as other learning methods.

This result suggests that using random weights is insufficient to learn how to
generalize from raw data, and instead approaches that set and adjust weights more
directly based on the available data are preferable, for example the methods used
in random decision forests or gradient boosted decision trees.

4.3 Comparing ALMA to Leake and Wilson’s po-
sition paper

As mentioned in 1.1, part of the inspiration for this thesis work was a list of
issues and areas to explore that were identified by Leake and Wilson [33] to guide
introspective learning research. ALMA addresses 7 out of 9 of these fundamental
issues. The approaches taken to address three of the issues together form the
foundation of metareasoning in ALMA: how to achieve a flexible learning focus,
enable multistrategy introspective learning, and monitor processing characteristics
in addition to outcomes.

� Flexible learning focus
Introspective learning research often has a narrow focus, only monitoring and re-

38

CHAPTER 4. EVALUATION AND DISCUSSION

pairing one specific part of the system. In a complete practical system with many
parts, it is not clear what process or knowledge should be assigned blame for any
specific reasoning failure and needs to be repaired. Attempting all possible repair
actions is not a good solution, as it has a high cost and may actually degrade the
overall performance of the system as a whole.

ALMA does not have a narrow focus, and is always prioritizing holistic whole-
system performance. The system changes corresponding to a ”repair action” in
ALMA is a new node, which can be evaluated based on how well the system
actually performs with and without including it.

� Enabling multistrategy introspective learning
Most learning systems rely on a single learning method. ALMA on the other hand
is continuously exploring and reprioritizing a wide spectrum of learning methods.

In ALMA, introspective learning is evaluated in the same manner as object-level
learning, and e.g. the caching and parameter-tuning components are applied only
when including them improves the measured performance. Additional forms of
meta-level learning can similarly be included in ALMA by adding a new meta-level
component, e.g. to change how a case base is indexed.

� Monitoring processing characteristics in addition to outcomes
Despite research in both areas, system repair and metamanagement of processing
resources have traditionally been examined separately, with little overlap.

ALMA learns both the predictive accuracy of its learning components, and
their resource cost. These performance measures are tightly integrated in ALMA,
focusing on cost-effective combinations and achieving the best result given available
resources.

� Reasoning about failure detection and response
Unlike a model-based introspective reasoner, ALMA does not have a ”gold stan-
dard” to compare individual problem-solving attempts against. For example the
ROBBIE system has built-in domain-specific strategies for how to respond to fail-
ures, while ALMA is focused on continually adjusting learning goals. The challenge
identified by Leake and Wilson was to determine what to do in response to a failure
- e.g. learning from it immediately, waiting to gather more information, or to just
ignore it entirely.

The meta-level node selection algorithm used in ALMA addresses this by con-
tinuously reprioritizing where to focus additional learning resources, effectively
waiting until the right time to learn from each problem-solving experience.

� Learning for self-understanding in addition to self-repair
This challenge relates to the ability of a system to predict its own performance,
e.g. to understand its limitations and choose which methods to apply based on its
own characteristics and anticipated failure modes.

ALMA does not directly anticipate failure, although strategies to do so could
be included as additional meta-level components. However ALMA is continuously
learning about its performance, and will also explore nodes that are considered

39

4.4. THE EFFECT OF ADDING A METAREASONING LAYER

suboptimal, in order to gain additional self-understanding. This allows ALMA to
understand when these nodes do and do not work.

� Adjustable modeling levels
Self-models are often high-level domain-independent descriptions of idealized pro-
cessing. This makes it difficult to connect the model to domain- and implementation-
specific details.

In ALMA, the self-model is always based on the specific implementation’s per-
formance in a specific domain. The meta-level components in ALMA are not
domain-specific, but their performance and the decision about whether to use them
at all is always determined empirically.

� Extending models and handling imperfect self-models
Approaches based on self-models often assume the self-model is perfect, and detri-
mental repair actions can be applied when an imperfect self-model incorrectly be-
lieves the repair will be helpful. One suggested approach to get away from this is
to monitor the introspective learning process itself, to determine whether changes
should be retained or discarded.

This is similar to ALMA’s approach, where many alternative predictors are
explored and trained, and the empirically-best predictor is used. ALMA’s approach
is effectively a set of provisional self-models whose performance is continuously
evaluated to determine which one is most appropriate.

× Supporting self-explanation
Self-explanation is valuable as a part of human cognition and learning. Human
experts often have a higher awareness of their own problem-solving process than
non-experts, and are better able to explain their reasoning.

ALMA does not address these issues, neither advancing the understanding of
what makes a good self-explanation, nor having the ability to explain its decisions.

× Exploiting interaction at the meta level
If introspective systems can explain themselves, they may also be able to receive
guidance from humans to assist their learning process and correct self-models, and
start to build a shared model and increased understanding together with their
users.

ALMA is intended to be able to operate fully autonomously and does not ad-
dress these issues.

4.4 The effect of adding a metareasoning layer

The most common effect of adding metareasoning is to increase accuracy while also
increasing the computational cost (often significantly).

In our research we measured and compared the computing resources required,
and showed that ALMA can improve overall classification efficiency with the same
level of computation, i.e. that the metareasoning performed is more valuable than

40

CHAPTER 4. EVALUATION AND DISCUSSION

simply spending more resources to train the underlying base reasoner. This is in
contrast to e.g. common versions of Stacking [50], which impose a large overhead
before any results can be produced and in our classification tests actually performed
worse than most individual reasoning algorithms when performing similar amounts
of computation.

The metareasoning added by ALMA still contributes to an increase in system
complexity, but having some form of meta-level reasoning is necessary to achieve
the benefits of introspection, including dynamic bias-shift at run-time. The way
ALMA is decomposed into separate components helps to alleviate the associated
complexity. This component decomposition allows single methods to remain rela-
tively simple, while still being evaluated based on how they empirically contribute
to improving the overall reasoning system, which was our goal.

41

4.4. THE EFFECT OF ADDING A METAREASONING LAYER

42

Chapter 5

Concluding remarks

In this thesis we have investigated learning aspects of machine learning systems,
beginning with learning in case-based reasoning (CBR) systems. This included
an initial framework for CBR systems, where individual components could be re-
placed to change the learning behavior of the overall system to be suitable for
different problem domains. This approach enables creating systems that can easily
be modified and adapted to new circumstances.

By specifying the characteristics of a new problem domain, the system could
automatically select which components to use. The major limitation of this system
was that it relied on human domain experts to characterize the problem domain
and human machine learning experts to characterize the learning components, and
there was no guarantee that a matching component would really work well in
practice.

This component-based approach was then extended with a framework for ana-
lyzing overall system performance in a generic manner, which supported automat-
ically evaluating different learning approaches. This framework enables the best
set of components for a particular problem domain to be chosen based on how
well they actually perform, rather than being selected based on the experience and
skill of human experts. The framework is generic enough to evaluate both eager
and lazy learning methods in a uniform manner, and is no longer limited to CBR
systems.

Finally a fully automatic metareasoning architecture was developed, which uses
the previous framework to continuously estimate the performance of individual
machine learning methods at run-time. This approach allows a learning system to
adapt and optimize itself while running, and in experiments can do so efficiently
enough to outperform individual machine learning methods and other metareason-
ing approaches that were evaluated.

43

5.1. FUTURE WORK

5.1 Future work

Transfer learning to bootstrap new tasks

To achieve even better results than in our tests, it is possible to include extra prior
information about the individual learning components instead of starting every
experiment with a blank slate and viewing them as indistinguishable black boxes.
For example, based on our results the overall system would perform better by
simply omitting half the algorithms. This selection should be based on how they
contribute to the overall performance across datasets, which is not the same as their
average individual performance - in our experiments the MultiLayerPerceptron is
one of the most important components with the best performance on several data
sets, despite its average performance being quite poor (because it is too slow for
many of the other data sets).

Instead of selecting a subset of components, this component-biasing could also
be implemented as a prior weight for components where an additional term is
added to the exploration part of the UCT score. This is similar to how the RAVE
algorithm and AlphaGo’s neural networks influence the tree-search when playing
Go. For Alma, this approach would bias the search to explore certain preferred
components first when there is very high uncertainty in early phases of learning,
while still retaining the UCT behavior of eventually exploring all the components
and making the final decision based on empirical results.

Applications for lifelong learning

The Alma architecture was designed to support lazy incremental learning, which
means systems can continue to learn and adapt autonomously after being deployed.
These ideas have recently received more attention within the AutoML community,
with a competition and workshop at NeurIPS 2018 specifically dedicated to lifelong
learning without any human intervention.

The ideas from this thesis research can potentially improve the capabilities and
performance of new lifelong learning systems, by explicitly learning meta-level per-
formance data, considering exploration/exploitation trade-offs to optimize perfor-
mance over time, and by adopting a modular architecture that can efficiently reuse
and tune already established components for new situations where they empirically
work well.

44

Bibliography

[1] Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AI Communications 7(1), 39–59
(1994), https://doi.org/10.3233/AIC-1994-7104

[2] Andrychowicz, M., Denil, M., Colmenarejo, S.G., Hoffman, M.W., Pfau, D.,
Schaul, T., Shillingford, B., de Freitas, N.: Learning to learn by gradient
descent by gradient descent. In: Proceedings of the 30th International Con-
ference on Neural Information Processing Systems. pp. 3988–3996. NIPS’16,
Curran Associates Inc., USA (2016), https://dl.acm.org/citation.cfm?
id=3157382.3157543

[3] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2-3), 235–256 (2002), https://doi.org/10.
1023/A:1013689704352

[4] Bentley, J.L.: Multidimensional binary search trees used for associative search-
ing. Commun. ACM 18(9), 509–517 (Sep 1975), https://doi.org/10.1145/
361002.361007

[5] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. In: Proceedings of the 24th International Conference
on Neural Information Processing Systems. pp. 2546–2554. NIPS’11, Cur-
ran Associates Inc., USA (2011), https://dl.acm.org/citation.cfm?id=

2986459.2986743

[6] Brachman, R.J., Gilbert, V.P., Levesque, H.J.: An essential hybrid reasoning
system: Knowledge and symbol level accounts of krypton. In: Proceedings of
the 9th International Joint Conference on Artificial Intelligence - Volume 1.
pp. 532–539. IJCAI’85, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1985), https://dl.acm.org/citation.cfm?id=1625135.1625237

[7] Breiman, L.: Stacked regressions. Machine Learning 24(1), 49–64 (1996),
https://doi.org/10.1007/BF00117832

[8] Breiman, L.: Statistical modeling: The two cultures (with comments and a
rejoinder by the author). Statist. Sci. 16(3), 199–231 (2001), https://doi.
org/10.1214/ss/1009213726

45

BIBLIOGRAPHY

[9] Bruland, T., Aamodt, A., Langseth, H.: Architectures integrating case-based
reasoning and bayesian networks for clinical decision support. In: Shi, Z.,
Vadera, S., Aamodt, A., Leake, D. (eds.) Intelligent Information Processing
V. pp. 82–91. Springer Berlin Heidelberg, Berlin, Heidelberg (2010), https:
//doi.org/10.1007/978-3-642-16327-2_13

[10] Brügmann, B.: Monte Carlo Go. In: AAAI Fall symposium on Games:
Playing, Planning, and Learning (1993), http://www.ideanest.com/vegos/
MonteCarloGo.pdf

[11] Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge
University Press (2006), https://doi.org/10.1017/CBO9780511546921

[12] Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-
armed bandits. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou,
L. (eds.) Advances in Neural Information Processing Systems 21, pp.
273–280. Curran Associates, Inc. (2009), http://papers.nips.cc/paper/

3580-mortal-multi-armed-bandits.pdf

[13] Clemen, R.T.: Combining forecasts: A review and annotated bibliography.
International Journal of Forecasting 5(4), 559–583 (1989), https://ideas.
repec.org/a/eee/intfor/v5y1989i4p559-583.html

[14] Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., Yang, S.: AdaNet: Adap-
tive structural learning of artificial neural networks. In: Precup, D., Teh,
Y.W. (eds.) Proceedings of the 34th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 70, pp. 874–883.
PMLR, International Convention Centre, Sydney, Australia (06–11 Aug 2017),
http://proceedings.mlr.press/v70/cortes17a.html

[15] Cox, M.T., Raja, A.: Metareasoning: A manifesto. Tech. rep., BBN TM-2028,
BBN Technologies (2007)

[16] Cox, M.T., Ram, A.: Introspective multistrategy learning: On the con-
struction of learning strategies. Artificial Intelligence 112(1), 1 – 55 (1999),
https://doi.org/10.1016/S0004-3702(99)00047-8

[17] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey.
Journal of Machine Learning Research 20(55), 1–21 (2019), http://jmlr.

org/papers/v20/18-598.html

[18] Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning (2015), https://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/10029

[19] Fox, S., Leake, D.B.: Introspective reasoning for index refinement in case-
based reasoning. J. Exp. Theor. Artif. Intell. 13(1), 63–88 (2001), https:

//doi.org/10.1080/09528130010029794

46

BIBLIOGRAPHY

[20] Francis, A.G., Ram, A.: The utility problem in case-based reasoning. In:
AAAICBR-93, the Proceedings of the 1993 Case-Based Reasoning Workshop
(1993)

[21] Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo
Go. Twentieth Annual Conference on Neural Information Processing Systems
(NIPS 2006) (2006), https://hal.archives-ouvertes.fr/hal-00115330

[22] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.:
Google vizier: A service for black-box optimization. In: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 1487–1495. KDD ’17, ACM, New York, NY, USA (2017),
https://doi.org/10.1145/3097983.3098043

[23] Hinton, G.E.: Learning multiple layers of representation. Trends in Cognitive
Sciences 11(10), 428–434 (2007), https://doi.org/10.1016/j.tics.2007.
09.004

[24] Houeland, T.G., Aamodt, A.: Towards an introspective architecture for meta-
level reasoning in clinical decision support systems. In: Proceedings of the
ICCBR 2009 Workshops. pp. 235–244. Springer Verlag (2009), https://doi.
org/10.21427/D71G70

[25] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimiza-
tion for general algorithm configuration. In: Proceedings of the 5th Inter-
national Conference on Learning and Intelligent Optimization. pp. 507–523.
LION’05, Springer-Verlag, Berlin, Heidelberg (2011), https://doi.org/10.
1007/978-3-642-25566-3_40

[26] Hutter, M.: The Universal Algorithmic Agent AIXI, pp. 141–183. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005), https://doi.org/10.1007/

3-540-26877-4_5

[27] J. M. Bates, C.W.J.G.: The combination of forecasts. OR 20(4), 451–468
(1969), https://doi.org/10.2307/3008764

[28] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of ex-
pensive black-box functions. Journal of Global Optimization 13(4), 455–492
(Dec 1998), https://doi.org/10.1023/A:1008306431147

[29] Kearns, M.: Thoughts on hypothesis boosting. Unpublished manuscript (Ma-
chine Learning class project) (1988)

[30] Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: ECML-06.
Number 4212 in LNCS. pp. 282–293. Springer (2006), https://doi.org/10.
1007/11871842_29

[31] Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: IJCAI. vol. 14, pp. 1137–1145. Montreal,
Canada (1995), https://dl.acm.org/doi/10.5555/1643031.1643047

47

BIBLIOGRAPHY

[32] Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems. CoRR
(2014), https://arxiv.org/abs/1402.6028

[33] Leake, D., Wilson, M.: Extending introspective learning from self-models.
Proceedings of the AAAI 2008 Workshop on Metareasoning: Thinking About
Thinking (2008)

[34] Li, B., Hoi, S.C.H.: Online portfolio selection: A survey. ACM Comput. Surv.
46(3), 35:1–35:36 (Jan 2014), https://doi.org/10.1145/2512962

[35] Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: Dy, J., Krause, A. (eds.) Proceedings of
the 35th International Conference on Machine Learning. Proceedings of Ma-
chine Learning Research, vol. 80, pp. 4095–4104. PMLR, Stockholmsmässan,
Stockholm Sweden (10–15 Jul 2018), http://proceedings.mlr.press/v80/
pham18a

[36] Radhakrishnan, J., Ontañón, S., Ram, A.: Goal-driven learning in the GILA
integrated intelligence architecture. In: Boutilier, C. (ed.) IJCAI. pp. 1205–
1210 (2009), https://dl.acm.org/doi/abs/10.5555/1661445.1661638

[37] Reinartz, T., Iglezakis, I., Roth–Berghofer, T.: Review and restore for case-
base maintenance. Computational Intelligence 17(2), 214–234 (2001), https:
//doi.org/10.1111/0824-7935.00141

[38] Richter, M.M., Aamodt, A.: Case-based reasoning foundations. The Knowl-
edge Engineering Review 20(3), 203–207 (2005), https://doi.org/10.1017/
S0269888906000695

[39] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Diele-
man, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game
of Go with deep neural networks and tree search. Nature 529(7587), 484–489
(01 2016), https://doi.org/10.1038/nature16961

[40] Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of
machine learning algorithms. In: Proceedings of the 25th International Con-
ference on Neural Information Processing Systems - Volume 2. pp. 2951–
2959. NIPS’12, Curran Associates Inc., USA (2012), https://dl.acm.org/
citation.cfm?id=2999325.2999464

[41] Sollich, P., Krogh, A.: Learning with ensembles: How over-fitting can be use-
ful. In: Proceedings of the 8th International Conference on Neural Information
Processing Systems. p. 190–196. NIPS’95, MIT Press, Cambridge, MA, USA
(1995), https://dl.acm.org/doi/10.5555/2998828.2998855

[42] Solomonoff, R.: A formal theory of inductive inference. part i. Information
and Control 7(1), 1 – 22 (1964), https://doi.org/10.1016/S0019-9958(64)
90223-2

48

BIBLIOGRAPHY

[43] Thompson, W.R.: On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika 25(3-4), 285–294
(12 1933), https://doi.org/10.1093/biomet/25.3-4.285

[44] Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA:
Combined selection and hyperparameter optimization of classification algo-
rithms. In: Proceedings of the 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. p. 847–855. KDD ’13, As-
sociation for Computing Machinery, New York, NY, USA (2013), https:

//doi.org/10.1145/2487575.2487629

[45] Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI
approximation. J. Artif. Int. Res. 40(1), 95–142 (Jan 2011), https://dl.acm.
org/citation.cfm?id=2016945.2016949

[46] Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning.
Artif. Intell. Rev. 18(2), 77–95 (2002), https://dx.doi.org/10.1023/A:

1019956318069

[47] Wallis, K.F.: Combining forecasts – forty years later. Applied Financial Eco-
nomics 21(1-2), 33–41 (2011), https://doi.org/10.1080/09603107.2011.
523179

[48] Watson, I.: A case study of maintenance of a commercially fielded case-based
reasoning system. Computational Intelligence 17(2), 387–398 (2001), https:
//dx.doi.org/10.1111/0824-7935.00151

[49] Weill, C., Gonzalvo, J., Kuznetsov, V., Yang, S., Yak, S., Mazzawi, H., Hotaj,
E., Jerfel, G., Macko, V., Adlam, B., Mohri, M., Cortes, C.: AdaNet: A
scalable and flexible framework for automatically learning ensembles (2019),
https://arxiv.org/abs/1905.00080

[50] Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241 – 259
(1992), https://doi.org/10.1016/S0893-6080(05)80023-1

[51] Wolpert, D.H.: The lack of a priori distinctions between learning algorithms.
Neural Computation 8(7), 1341–1390 (2013/11/19 1996), https://doi.org/
10.1162/neco.1996.8.7.1341

[52] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning
(2017), https://arxiv.org/abs/1611.01578

49

BIBLIOGRAPHY

50

Part II

Selected papers

51

Paper A

An Introspective Component-
Based Approach for Meta-Level
Reasoning in Clinical Decision
Support Systems

Authors: Tor Gunnar Høst Houeland and Agnar Aamodt

Published in: Proceedings of the First Norwegian Artificial Intelligence Sympo-
sium (NAIS’09). pp. 121–132. Tapir Forlag (2009), ISBN: 978-82-519-2519-8

My contributions: I developed the meta-level architecture presented in the paper,
wrote the sections on metareasoning, vocabulary, and architecture, and incorpo-
rated comments and suggested changes into the text.

53

An Introspective Component-Based Approach for Meta-Level
Reasoning in Clinical Decision Support Systems∗

Tor Gunnar Houeland, Agnar Aamodt
Department of Computer and Information Science,

Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway

{houeland, agnar}@idi.ntnu.no

Abstract
The paper presents core elements of a meta-level architecture for clinical

decision support, in the domain of palliative care. The goal of the reported

research is to develop an architecture and an integrated set of methods for

an introspective meta-level reasoner. Within the architecture a system is

under development that addresses the identification and utilization of clinical

guidelines for the assessment and treatment of cancer pain. Case-based

reasoning is a core component of the architecture, which also incorporates

rule-based and probabilistic model-based methods. The paper presents the

overall architectural constraints and exemplifies parts of it through structured

component descriptions.

1 Introduction
A clinical decision support system that covers several clinical tasks, such as patient

examination, disease hypotetization, diagnosis determination, treatment planning, and

drug administration, would typically need to combine several types of knowledge and

several reasoning methods to provide good advisory support. There has recently been

a renewed interest in meta-level reasoning in which a computer reasons about its own

reasoning processes as well as the problem at hand [1].

The idea is that this allows the system to improve its own reasoning processes, for

example by determining why a problem was solved incorrectly. By identifying where the

error occurred in the reasoning process, the faulty part can be amended which would let

the system solve such problems correctly in the future. In order to enable the meta-level

reasoner to improve its own performance, learning within the meta-level reasoner itself,

i.e. introspective learning, is also called for.

The focus of the research presented here is on meta-level reasoning for clinical

decision support. A component-based architecture and an integrated set of methods for

a meta-level reasoner to improve its reasoning and learning abilities are currently being

∗An earlier version of this paper was presented at the Seventh Workshop on Case-Based Reasoning in the

Health Sciences, July 21, 2009. We’d like to thank the other participants for their helpful and encouraging

feedback.

This paper was presented at NAIS-2009; see http://events.idi.ntnu.no/nais2009/.

developed. The architecture allows for the integration of all three reasoning paradigms in

symbolic AI, i.e. rule-based, case-based, and (deeper) model-based reasoning.

We are addressing this problem in the domain of clinical decision support for palliative

care. In a cooperation with the Palliative Medicine Unit, Cancer Department, St. Olavs

University Hospital in Trondheim, we are studying the potential for proactive, advice-

giving systems for the improved treatment of pain in cancer patients. In our current

project, short-named TLCPC, which has national funding, the focus is on lung cancer.

However, this research is tightly linked to a larger EU project called EPCRC [2], which

covers all forms of cancer pain as well as other problems related to palliative care for

long-term cancer patients.

A motivation for that project is also to standardize procedures and to unify clinical

practice in palliative care [3], a goal for which computerized decision support systems

have a strong potential. The system under development will in particular address the

identification and utilization of clinical guidelines [4].

In the next section we review some of the related research in metareasoning with

case-based components, and CBR used for guideline supported clinical decision-making.

In section 3 our metareasoning approach and introspective architecture are introduced.

Section 4 illustrates important semantic types used to describe components in the

architecture, which is discussed in section 5. The status of the clinical guideline

application is presented in section 6. Concluding remarks end the paper.

2 Related Research
There is a significant amount of research that has addressed metareasoning in relation to

case-based reasoning systems. In Meta-AQUA [5, 6] introspection is used in the retain

phase to learn from mistakes. What is referred to as introspective meta-XPs are used to

represent failures encountered while the system operates. The system constructs learning

plans that consist of calling various learning algorithms.

Early accounts of meta-level architectures involving CBR also include BOLERO

[7] and ANALOG [8]. In BOLERO, a case-based meta-level planner controls the

execution of a rule-based reasoner designed to accomplish different medical diagnosis

tasks. New plans are constructed during the problem solving process when needed,

and captured as new cases by the meta-level learner. ANALOG provides a knowledge

modeling framework and a system architecture that links various types of tasks, methods,

and domain knowledge types. A selected method runs until an impasse situation is

encountered, at which time a new method selection process is run. The meta-level learner

remembers failed and successful instantiations of methods.

Christodoulou and Keravnou describe a meta-level architecture [9] in the domain of

breast cancer histopathology. Each problem solver is associated with a task, an inference

mechanism, and domain knowledge constraints. A set of meta-parameters is used by

the metareasoner to characterize knowledge types (e.g. experience-based, causal), and

desired solution properties (e.g. level of detail, accuracy, efficiency). The metareasoner

is a case-based reasoner that captures and stores problem-solving paths as strategy cases

incrementally.

In the ADAPtER system [10], an architecture that combines model-based and case-

based reasoning for medical diagnosis, the CBR component is the primary object level

reasoner. The model-based method is triggered either when the retrieval method fails

to find a matching case, or the case adaptation module fails. Cases are captured as a

compilation of the model-based process.

ROBBIE [11] is a case-based planning system in which an introspective model-

based reasoner provides learning goals for the system when it fails to meet reasoning

performance expectations. This way of generating learning objectives based on reasoning

failures is similar to Meta-AQUA, although it is performed in different ways.

jCOLIBRI [12] is a Java framework for building CBR systems with metareasoning

capabilities. It uses a two-layer architecture that separates the user interface and

core classes, and uses advanced feature of the Java language and libraries to simplify

development. jCOLIBRI uses a task structure with semantics defined in CBROnto, an

ontology created for representing the terms and concepts that are important for CBR

development.

The principles of evidence-based medicine, in which systematic research evaluation

regimes are used to assess and justify results from medical research, form a well-

established basis for medical practice [13]. One manifestation of this is the specification

of clinical guidelines, i.e. operational procedures for how to conduct a particular type of

patient examination, make a diagnosis, administer a type of drug, or perform other types

of treatment.

Another source of information used by clinicians in their daily practice is, of course,

the set of experiences a clinician has from earlier patients. While guidelines are important

in unifying high-quality practice at a general level, past patient cases provide another

level of specificity, closer to concrete actions. Hence, a combination of general guidelines

with past experience cases is potentially a strong combination. Identifying the strengths

and weaknesses of a case-based method vs. a generalization-based one can be done

analytically or experimentally.

Marling et. al. [14] reports on an experiment in the domain of nutritional menu

planning, in which a hybrid system was developed by combing the strengths of separate

rule-based and case-based reasoners. The hybrid system outperformed both separate

systems.

In the CARE-PARTNER system [15] medical guidelines are realized in the form

of problem solving pathways, implemented as a rule-based system combined with

information retrieval, and with CBR as the main problem solving method. GLARE [16]

is a general decision-support system for managing and utilizing clinical guidelines, in

which guidelines are represented as a hierarchical structure of decision paths. Based on

that system a CBR system was incorporated as additional knowledge to handle situations

that are not covered by the guidelines, so-called non-compliances [17].

Even if several medical guideline systems combine different reasoning paradigms,

there has been very little work on moving the combined reasoning up to the metareasoning

level.

Figure 1: Duality in reasoning and acting (from Cox and Raja 2008 [1])

3 Metareasoning Approach
Recently, Cox and Raja [1] presented a general high-level framework of metareasoning,

shown in figure 1. It relates three levels, i.e the ground level (physical perception and

action), the object level (reasoning about action), and the meta-level (reasoning about

reasoning).

Within this high-level perspective, Leake and Wilson [18] address the learning part

of metareasoning, and present a set of challenging issues, such as learning for self-

understanding and self-explanation. Many meta-level reasoning systems start by building

a partial solution and then invoking meta-level reasoning functionality to determine

whether the object-level reasoning processes are working satisfactorily or not. Such

systems then either proceed as normal, or classify the reasoning process as a failure and

create a new metareasoning goal to learn from this failure.

This is in contrast to the meta-level control agent in our approach, which operates

on the object-level reasoning components directly without a specific reasoning failure to

address. This allows the system to have a clearer broad focus on performing changes that

affect the entire reasoning system instead of correcting single failures, and this broadening

is also identified by Leake and Wilson [18] as an important opportunity for a more flexible

learning focus.

Future planned meta-level components in our approach such as a competence-

evaluator for problem-solving methods can also assist in providing the system with a level

of self-understanding, which is another identified opportunity for introspective learning

systems.

A system using our introspective architecture with CBR reasoning methods which

follows this general framework is shown in figure 2. The ground level is represented as

I/O for the system, which is not covered in our architecture but must necessarily exist

in some form for a complete CBR system. In the shown system reasoning tasks are

explicitly represented, with a “CBR-based problem solving task” at the object level and

several metareasoning tasks.

In our architecture there is no fundamental difference in how reasoning tasks for the

two levels must be represented, but they are shown as seperate boxes in the figure to ease

understanding and fit the metareasoning framework of Cox and Raja. The importance of

our introspective architecture lies in the components, each of which implements a specific

functionality, and is modified and assigned to a particular reasoning task by meta-level

reasoning components.

Richter [19] introduced the knowledge container model, where pieces of knowledge

can be categorized into four categories: case vocabulary, cases, similarity assessment and

adaptation knowledge. Given that a set of precise and consistent terms is important for

reasoning at the meta-level, we explicitly include the CBR system vocabulary as part of

Figure 2: A CBR system based on the introspective architecture

the case vocabulary category.

To make sure that the vocabulary contains semantics that are useful for human

designers, we suggest that the vocabulary should be created and updated manually, unlike

the other knowledge sources which will be changed and influenced by the meta-level

reasoner.

In our architecture the case knowledge is stored in cases, similarity assessment as

part of the components providing methods for object-level retrieval and the adaptation

knowledge is shared between object level reuse components and a more profound system-

level adaptation in meta-level components.

For the meta-level control agent to be able to examine and calibrate the system’s

components, it’s important that the settings available can be interpreted by the control

program, and that the components expose interfaces at an appropriate level of abstraction.

To facilitate this, we are developing a vocabulary of CBR-related terms and the intended

semantics as part of our approach.

An important aspect of the vocabulary is that it describes what the terms mean at a

semantic level without relying on the specific realizations in any particular CBR system

implementation. An example of this is a case base, which is simply defined as a set of

cases. While in practice many CBR systems store the cases as a form of ordered lists,

their reasoning processes typically do not rely on the particular order the cases are listed

in within computer memory or on disk.

The purpose of the vocabulary is to abstract away the particular specifics in

implementations and generalize the terms to a semantic level where it describes the actual

requirements for a term without imposing a needlessly specific design.

Our vocabulary is being developed to be conceptually compatible with CBROnto [20],

a modeling framework that has already examined the meanings and relations between

terms from an ontological perspective. As an added benefit the CBROnto ontology is

compatible with the “4 REs” CBR process cycle [21] which is widely quoted and referred

to in the CBR literature.

4 Vocabulary Examples
Of particular importance for our semantic task description is the type system for

inputs and outputs. These types are meant to represent at the knowledge level the

essential meaningful content that is to be processed. For system implementations the

exact structures used to realize these knowledge types may differ, and often the same

programming language structures may be used for several different knowledge types. E.g.

for a case-based reasoning system based on feature vectors, the stored cases, problem

specifications, retrieval queries and produced solutions will typically all be implemented

using the same type of programming language data structure, but they are still different

on a semantic level.

Important semantic input and output base types.
Case A record of a problem solving experience, consisting of the encountered problem

and the solution details

AttributeCase A subtype of Case where the problem descriptions are represented as a

set of features

Feature A particular aspect of an AttributeCase, where each separate case can either lack

the feature or have a corresponding value selected from the feature’s set of possible

values

ProblemInput A problem specification for a problem-solving method

ProblemSolution A solution to a problem

SolutionMethod A method used to create a problem solution

SolutionEvaluation An evaluation of a solution applied to a problem

Similarity A floating point number used specifically to represent similarity

Derived semantic types.
Set< T > A collection of objects of type T

List< T > An ordered collection of objects of type T

(a, b, c, ...) An n-tuple such as (Case, Similarity) consisting of n values where the first

is of types a, the second of type b, etc.

A → B A function such as Case → Similarity mapping inputs of type A to output of type

B

Other terms used in the example figures.
SizeOf The number of objects in a Set or List collection

PC An identifier used in the examples to specify an unrestricted type for problem

characterizations

CB An identifier used in the examples to specify a type adhering to the Case semantics

for cases in a case base

Task Input Output

Case-based reasoning ProblemInput ProblemSolution
- Retrieve ProblemInput Set<CB>
– Problem characterization ProblemInput PC
– Case retrieval PC Set<CB>
– Focus Set<CB> Set<CB>
- Reuse (PC, Set<CB>) ProblemSolution
– Adapt solution method (PC, Set<CB>) SolutionMethod
– Adapt solution (PC, SolutionMethod, Set<CB>) ProblemSolution
- Revise ProblemSolution (PS, SE)
– Evaluate solution ProblemSolution SolutionEvaluation
– Repair solution (PS, SE) ProblemSolution
- Retain (PS, SE)
– Update general knowledge (PS, SE)
– Add to case base (PS, SE)

(PS, SE) is an abbreviation for (ProblemSolution, SolutionEvaluation) due to

space concerns.

Figure 3: Inputs and output for the CBR tasks

5 Introspective Architecture
In our conceptual framework we consider the traditional core case-based reasoning

process as one possible problem solving method at the object level. We consider this

to be one limited part of the combined reasoning system, with specific responsibilities,

and there can be potentially many other problem solving methods implemented in the

same architecture.

A high-level task decomposition of the CBR process for our architecture is shown in

figure 3, where the task “Case-based reasoning” is split into the 4 RE subtasks, and each

of these are further split into smaller subtasks. Any components that are assigned to parts

of this process must match the semantic input and output types for the corresponding

tasks, which are also included in the figure.

To elaborate on the case-based retrieval task, it starts from a ProblemInput and

retrieves a set of cases Set<CB> where CB is a type adhering to the Case semantics,

and is further subdivided into subtasks that further specify how this is performed. It starts

with a subtask identifying the important aspects of the problem and characterizing it as a

query, transforming the ProblemInput into an intermediate form PC.

This intermediate form is not restricted by the architecture, and the only requirement is

that the methods performing the subsequent CBR subtasks can accept the characterization

form PC as input. This characterization is used to retrieve a number of previous cases

from the case base, and then this is further narrowed to just focus on the most relevant

information by e.g. filtering out a subset of cases or generalizing cases. The other subtasks

are formalized in a similar way and correspond to the well-known steps that are often used

to describe CBR systems.

In our approach, the metareasoning components exist separately from the object-level

CBR reasoning components, and in fact influence and controls how the CBR problem

solving method is performed, which corresponds to the aforementioned metareasoning

cycle [1]. By evaluating how the CBR method performs while solving actual new problem

instances, the meta-level control agent can identify the strengths and weaknesses of

the current system and attempt to use this to improve the system’s competence or use

alternative reasoning methods. For our meta-level component-combiner this is achieved

by attempting to re-solve problems using different assignments of methods for each of

the tasks and subtasks in the architecture. Whether the the newly combined reasoning

process is an improvement is then evaluated based on whether the solutions produced for

individual problem queries are correct for more problem instances than before.

Architectural components
One of the most important features of this architecture is that each component contains

extra structures that semantically describe the component semantically using our CBR

vocabulary. It is on the basis of this added information that the meta-level control

component can automatically assign components to perform the system’s reasoning tasks.

Figure 4 shows such a self-describing semantic structure for an example object-level

retrieval component.

Each component contains a list of types that apply for the component, which is listed

first in the figures. This can either just be a single name to indicate that any type is

supported, or a statement of the form “name isa supertype”, which indicates that the name
type must support the same operations as supertype. This is useful when a component

performs a generic operation that can apply to many different types of input, and e.g. only

requires that the input and output types are the same or that two inputs are comparable.

This section is empty for simpler components that only refer directly to specific types in

the vocabulary, such as the illustrated example retrieval component.

After that the input and output variables are listed. Each variable consists of a line of

the format “name: type”, where name is an identifier that is used to refer to the input or

output throughout the component specification and type is the semantic type, which can

either be a specific from the vocabulary or one of the types specified in the component’s

Types section. An example of this is the line “query: AttributeCase” from the example

component, which means that the component receives an input of type AttributeCase
which is referred to as query in the component description.

The following section lists Conditions that have to be fulfilled for the component to

produce the expected results. As long as the input variables conform to the specified

conditions, the output variables are guaranteed to follow the specifications in the

Guarantees section. While the type specifications are semantic restrictions on what kind

of operation the component can perform, the conditions specify for which values of inputs

the component will actually behave as intended, and these conditions are not necessarily

checked by the component.

Because of this the component’s operation can usually be performed for non-

conforming inputs, but this can produce undefined results and should be avoided. By

listing the conditions in the self-describing structure, the metareasoning component can

make sure that only compatible components are combined, or that the conditions are

checked on-demand before the operation is performed where this cannot be guaranteed.

The final section is a short semantic description of the core functionality performed

by the component. This has the format “x based on y”, where x and y are statements

composed using the input and output variables as well as a set of pre-specified terms

representing important concepts related to the reasoning system and the application

domain.

Based on these two examples, the meta-level control agent can create a new

Types:

Input: query: AttributeCase
casebase: Set<AttributeCase>
similarity f unction:

(AttributeCase source, AttributeCase target) → Similarity
Output: ordered: List<AttributeCase>

Conditions: 5 ≤ SizeOf(casebase) < 100000

0 ≤ similarity f unction(x, y) ≤ 1

Guarantees: SizeOf(ordered) = 5

Approach: order(casebase) based on query

A component that assigns an order to the casebase based on similarity to the query using

the specified similarity f unction.

Types: cCase isa AttributeCase
Input: source: cCase

target: cCase
Output: similarity: Similarity

Conditions:

Guarantee: 0 < similarity ≤ 1

Approach: compute similarity similarity based on

source features, target features

A component for computing similarity based on local feature similarities between source
and target.

Types:

Input: query: AttributeCase
casebase: Set< AttributeCase >

Output: ordered: List< AttributeCase >

Conditions: 5 ≤ SizeOf(casebase) < 100000

Guarantee: SizeOf(ordered) = 5

Approach: order casebase based on query similarity

A combined component that assigns an order to the casebase based on feature weighted

similarity to the query.

Figure 4: Example components for object-level reasoning tasks.

component that accepts a query and case casebase of type AttributeCases and a feature

weight map and returns a ranked list of matching cases. This is done by substituting

AttributeCase for cbType and cCase (which fulfills the listed type requirements) and

using the feature similarity measure as the similarity f unction (by identifying that the

output guarantee 0 < similarity ≤ 1 fulfills the 0 ≤ similarity f unction(x, y) ≤ 1

condition).

The meta-level learning component can also further refine this into a component that

learns the feature weight map automatically while it is being used. This can be done

by matching it with an appropriate learning method that e.g. takes a casebase (Set<
AttributeCase >) as input and produces a similarity importance value for each feature

among cases in the casebase.

6 Palliative Care Application
Although there has been a lot of focus on developing clinical guidelines within the medical

community, and several guideline systems have been developed by medical professional

organizations, there is not a consensus as to what is a good guideline system. Further,

the active use of guidelines in a clinical setting is far from the level desired, both from

the perspective of quality of treatment and the perspective of unified treatment across

hospitals and countries.

In our partner project EPCRC, being a collaboration involving many highly influential

medical groups across Europe, the aim is to reach a consensus on a set of high-quality

and operational guidelines that will be used in practice. While awaiting the results from

EPCRC, we currently work with an existing set of guidelines defined by NCCN (National

Comprehensive Cancer Network) in the US. An ontology is currently being built based

on a combination of generic UMLS terms combined with terms from the SNOMED and

NCI (National Cancer Institute in the US) ontologies.

The top-down design process is combined with bottom-up experimental system

building, starting from simple system components that will be combined. Currently a

simple a rule-based reasoner is being implemented at the object level. Example guidelines

link patient data related to pain level, pain history, and history of treatment, to the

next treatment. Type of treatment considered is the administration of different types of

analgesics, with opioids as the largest subclass. Based on the results from the initial

model, the system will be extended with case-based and model-based components. The

model-based component will a be Bayesian network for reasoning about causality under

uncertainty.

Acquiring the necessary medical knowledge needed for our experiments is a

continuing process. To advance the method development we are developing a toy example

system in the domain of advice-giving for film selection, in parallel to the more complex

clinical guidelines system. In that system CBR methods are currently focused on both

the meta and object levels. Cases, problems and solutions are currently represented

as feature vectors, and there are no explicitly represented general knowledge structures

outside of the CBR reasoning components. To predict a movie rating for a user, a retrieval

component retrieves a number of similar other users that have seen the movie, where

similarity is determined as the average difference in ratings for movies both users have

rated. A simple reuse component then copies the majority rating among the retrieved

cases. The system has a meta-level control agent that adheres to the principles of the

metareasoning approach described earlier. Component combinations are tried out based

on matching the input and output type descriptions. Although simple and different

from the clinical application, the system assists in the bottom-up specification of the

introspective architecture by providing a test-bed for experiments.

In a clinical guideline support system past cases may be utilized in several ways. The

role we have intended for the cases in our guideline system is two-fold. Having arrived

at a leaf node in the guideline structure, CBR will be used to continue from there by

providing a more specific and detailed advice, based on adapting a past result. On the

other hand, if the guideline system cannot provide reasonable advice, CBR is triggered as

a complementary method. The latter approach is similar to the non-compliance method

[17] referred to earlier.

7 Conclusions
In this paper we have presented an introspective approach to meta-level learning and

outlined a component-based architecture for designing reasoning systems which supports

our introspective methods. The main contribution of our approach is the way our

architecture allows for gradual additions of metareasoning methods that focus on broad,

system-wide improvements.

We are working on further developing this architecture, and adding new components

directed towards both object-level and meta-level reasoning methods for a clinical

decision support system based on medical treatment guidelines.

Acknowledgements
This research is supported by Norwegian Research Council (NFR) grant, Contract no

183362, Translational Research in Lung Cancer and Palliative Care (TLCPC), together

with funds from the Norwegian University of Science and Technology (NTNU). Thanks

to Tore Bruland and Helge Langseth who contributed on the AI method side through a

series of discussions, Sunil Raja who is our main contact on the medical side and has

provided insight into clinical pain assessment and treatment, and Stein Kaasa who is the

initiator and project leader of both the TLCPC and EPCRC projects.

References
[1] Cox, M.T., Raja, A.: Metareasoning: A manifesto. Technical report, BBN TM-

2028, BBN Technologies (2007)

[2] Haugen, D.F., Kaasa, S.: The EPCRC. Eur J Palliat Care (2007; 14(3):130)

[3] Kaasa, S.: Palliative care research – time to intensify international collaboration.

Palliat Med (2008; 22:301-2.)

[4] Quaseem, A.e.: Evidence-Based Interventions to Improve the Palliative Care of

Pain, Dyspnea, and Depression at the End of Life: A Clinical Practice Guideline

from the American College of Physicians. Annals of. Internal Medicine, vol. 148,

no. 2 (2008:141-146)

[5] Cox, M.T., Eiselt, K., Kolodner, J., Nersessian, N., Recker, M., Simon, T.:

Introspective multistrategy learning: On the construction of learning strategies.

Artificial Intelligence 112 (1999) 1–55

[6] Cox, M.T.: Multistrategy learning with introspective meta-explanations. In:

Machine Learning: Proceedings of the Ninth International Conference, Morgan

Kaufmann (1992) 123–128

[7] Lopez, B., Plaza, E.: Case-based planning for medical diagnosis. In Ras., Z. (ed.),

Proceedings of ISMIS-93. LNAI 837, Springer, 1993: 96-105

[8] Arcos, J., Plaza, E.: A reflective architecture for integrated memory-based learning

and reasoning. In Weiss, S. et. al. (eds.): LNAI 873 , Springer, 1994: 289-300

[9] Christodoulou, E., Keravnou, E.: Metareasoning and meta-level learning in a hybrid

knowledge-based architecture. Artificial Intelligence in Medicine 14 (1998): 53-81

[10] Torasso, P.: Multiple representations and multi-modal reasoning in medical

diagnostic systems. Artificial Intelligence in Medicine, 23 (2001): 49-69.

[11] Fox, S., Leake, D.B.: Combining case-based planning and introspective reasoning.

In: Proc. of the 6th Midwest Artificial Intelligence and Cognitive Science Society

Conference. (1995) 95–03

[12] Recio-Garcı́a, J.A.e.a.: Ontology based CBR with jCOLIBRI. In Ellis, R., Allen,

T., Tuson, A., eds.: Applications and Innovations in Intelligent Systems XIV.

Proceedings of AI-2006, Springer (December 2006) 149–162

[13] Friedland, D.: Evidence-based medicine: A framework for clinical practice. (1998)

[14] Marling, C., Petot, G., Sterling, L.: Integrating case-based and rule-based reasoning

to meet multiple design constraints. Comp. Intell., 15 (3), 1999, 308-332

[15] Bichindaritz, I., Kansu, E., Sullivan, K.M.: Case-Based Reasoning in CARE-

PARTNER: Gathering Evidence for Evidence-Based Medical Practice. EWCBR’98,

LNAI 1488, pp. 334-345 (1998)

[16] Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and

executing clinical guidelines. Artificial Intelligence in Medicine, 23(3):249–276

(2001)

[17] S. Montani, S.: Case-based reasoning for managing non-compliance with clinical

guidelines. ICCBR 2007, 5th Workshop on CBR in the Health Sciences (2007)

[18] Leake, D., Wilson, M.: Extending introspective learning from self-models.

Proceedings of the AAAI 2008 Workshop on Metareasoning: Thinking About

Thinking (2008)

[19] Richter, M.M.: The knowledge contained in similarity measures. Invited Talk at

ICCBR-95 (1995)

[20] Dı́az-Agudo, B., González-Calero, P.A.: CBROnto: A Task/Method Ontology for

CBR. In: Procs. of the 15th International FLAIRS’02 Conference, AAAI Press

(2002) 101–105

[21] Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications 7(1) (March 1994) 39–59

66

Paper B

The Utility Problem for Lazy
Learners - Towards a Non-eager
Approach

Authors: Tor Gunnar Høst Houeland and Agnar Aamodt

Published in: Bichindaritz, I., Montani, S. (eds.) Case-Based Reasoning. Research
and Development, Lecture Notes in Computer Science, vol. 6176, pp. 141–155.
Springer (2010)

https://doi.org/10.1007/978-3-642-14274-1_12

My contributions: I developed the ideas, research, and experiments presented in the
paper, wrote the initial draft, and incorporated comments and suggested changes
into the text.

67

The Utility Problem for Lazy Learners
- Towards a Non-eager Approach

Tor Gunnar Houeland, Agnar Aamodt

Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
{houeland,agnar}@idi.ntnu.no

Abstract. The utility problem occurs when the performance of learn-
ing systems degrade instead of improve when additional knowledge is
added. In lazy learners this degradation is seen as the increasing time
it takes to search through this additional knowledge, which for a suffi-
ciently large case base will eventually outweigh any gains from having
added the knowledge. The two primary approaches to handling the util-
ity problem are through efficient indexing and by reducing the number
of cases during case base maintenance. We show that for many types of
practical case based reasoning systems, the encountered case base sizes
do not cause retrieval efficiency to degrade to the extent that it becomes
a problem. We also show how complicated case base maintenance solu-
tions intended to address the utility problem can actually decrease the
combined system efficiency.

1 Introduction

A concern for case-based reasoning (CBR) systems that are deployed and will
keep running for many years is how the system will change over time. The capa-
bility for learning is an important aspect of many such systems, but by its very
nature the act of learning will change the system from its current state to some-
thing that is partially unknown. There will normally be a desirable improvement
from learning, but its effects may also include unwanted changes. One of these
changes is that as the system’s knowledge increases, the space needed to store
the knowledge and the time it takes to process it also increases. The storage
space and time taken to process the knowledge will increase without bounds,
and eventually go far beyond the space and time taken by the original system.
Because of this behavior, there will always be some theoretical point where the
total performance of the system is degraded by adding additional knowledge.
Many different methods have been suggested to address this problem, which is
often included under the wider umbrella of case base maintenance.

The maintenance methods used to address this problem can be split in two:
maintaining the case base indexes, and maintaining the case base contents. In-
dexing methods work by quickly identifying the relevant parts of the knowledge
base, which can allow a system to examine only a small fraction of its available

knowledge. Methods for maintaining case base contents aim to reduce the size
of the system’s case base, making it both faster to examine since there is less
knowledge, and reducing the storage space needed to store the data.

The utility problem in learning systems occurs when knowledge learned in
an attempt to improve a system’s performance degrades it instead [17, 3]. This
is most common in speed-up learning systems, where the system’s knowledge is
used to reduce the amount of reasoning required to solve a problem. For pure
speed-up learners it is assumed that there is already a slower method available
for finding an acceptable solution to the problem. From a simplified perspec-
tive, cases in a CBR system may be viewed as a form of speed-up knowledge,
where storing, retrieving, and adapting cases provides for more efficient problem
solving than first-principles or model-based methods [15, 9]. The goal is to pro-
duce acceptable results more quickly, and hence the time taken to perform the
system’s reasoning is of primary concern.

Case-based reasoning is also known as a lazy approach to learning and prob-
lem solving. The very essence of lazy learning is that choices regarding the so-
lution of a problem will be postponed as long as possible, until the problem
query is posed and as much information as possible is available. Building index
structures and deleting cases from the case base are both eager methods, and
hence somewhat counter-intuitive to the CBR idea. Indexing and deletion reduce
the amount of knowledge available, without knowing whether that information
could have been useful for solving a future problem. Hence, indexing and deletion
methods should only be used when they are really needed. In the work reported
here we explore the hypothesis that for a wide range of CBR application systems,
addressing real world problems, they may not be needed.

This work is situated within our research on a new architecture for meta-level
reasoning and introspective learning [10]. A less eager approach to indexing and
case deletion, if feasible, will allow more freedom to the meta-level reasoner.

This paper examines the utility problem in CBR as it applies to most of the
CBR systems we have built and are building today, with case bases of reasonable
sizes. Based on existing literature and several example utility models for case-
based reasoners, we show that neither indexing nor case deletion policies are
necessary for a wide range of CBR systems, and in fact can be detrimental to a
CBR system’s overall goal.

In section 2 the background of the utility problem is summarized, and some
earlier research results relevant to our work is discussed. This is followed in
section 3 by an analysis of the utility concept and a comparison of three different
speed-up learner scenarios. Section 4 discusses the use of indexing strategies for
speeding up retrieval. Section 5 discusses the benefit of limiting case base size and
shows how the cost of advanced maintenance methods may negate the benefits
of a reduced case base through an illustrative experiment. Concluding remarks
end the paper.

2 Background and related research

A substantial amount of research has addressed the utility problem in CBR [19,
13] Over the past few years there has been a broad range of research addressing
specific issues of case deletion, addition and efficient indexing [20, 25, 2]. Wilson
and Leake [14] present a thorough examination of the dimensions of maintenance
strategies and a survey of maintenance research in terms of those dimensions.

The utility problem is also referred to as the “swamping problem”. In their
seminal paper on the utility problem in CBR, however, Francis and Ram [9] refer
to swamping as one of three types of utility problems in CBR. Swamping is the
phenomenon that a single unit of knowledge added to the knowledge base - i.e.
a case added to the case base - improves problem solving speed at the individual
level, because a more similar case to a query may be found, while the performance
over the knowledge base as a whole is degraded due to increased retrieval and
matching overhead. Swamping is also referred to as the “core” utility problem,
which is probably why the two have become synonyms. The other types of utility
problems listed are the “expensive chunks problem” and the “search-space utility
problem”. The first refers to the problem of performance degradation at the level
of individual knowledge units, because of the matching cost of a single unit (a
macro operator, for example). The second refers to degradation due to increased
complexity of search control knowledge, of particular relevance to the learning of
meta-level knowledge. Although all three have relevance for CBR systems, the
focus in this paper is on the swamping problem.

The processing power available for modern CPUs continues to increase, con-
tinually reducing the problems associated with large amounts of data, and al-
lowing large case bases to be handled which would have been considered im-
possible for a reasonable budget 10 years ago. However, this is typically only
true for polynomial-time algorithms, and especially for algorithms that run in
(sub-)linear time. Other algorithms that have an exponential running time are
unlikely to ever be practical for large inputs, such as many graph-matching algo-
rithms. This means that the “expensive chunks problem” is unlikely to be greatly
affected simply by advances in computer hardware, since they are NP-hard in
the worst case [23]. On the other hand these advances affect the degradations
experienced due to the swamping problem, since algorithms for searching the
knowledge base are typically either O(N) or O(log N).

The main cause of the swamping problem is that retrieval time will increase
with a growing case base while adaptation time will decrease. The latter is due to
a smaller distance between a query case and the best matching case on average.
As the case base grows retrieval time is likely to dominate, however, which leads
to a logarithmic or higher increase in processing time. For a speed-up learner
this increase may negate the efficiency gains during adaptation and eventually
even cause the system to be slower than the underlying “slow” solver. The speed
increase has been reported as being substantial in some systems where this log-
arithmic increase has no significance, for example a thousand-fold increase in
CASEY [12]. Other machine learning systems have reported more modest fig-
ures, such as a factor up to six in SOAR and ten in PRODIGY/EBL [9]. Systems

with these speed-up figures that are left running and collecting experience for a
long time will gradually slow down, and eventually be slower than the unassisted
“slow” solver [9].

The trade-off is perhaps most clearly illustrated and explored for some types
of control rule learning (CRL) systems, where every individual control rule is
guaranteed to have a positive utility (improve performance) but, in concert,
also have a negative utility (degrade performance) [9, 17]. Francis and Ram [8]
describe a framework for modeling CRL and CBR systems, and for analyzing
the utility problem for these reasoning models. The authors identified that the
retrieval costs for CBR increase without bound, and that in the limit, CBR
systems will get swamped and the cost of retrieval will outweigh the benefits
of case adaptation. The authors conclude that CBR is nevertheless relatively
resistant to the utility problem, compared to CRL systems, because the cases
have the potential to greatly reduce the amount of problem solving needed, and
that the cost of retrieval is amortized across many adaptation steps.

Smyth and Cunningham [19] examine the utility problem in CBR through
experimenting with a path finding system that combines Dijkstra’s algorithm
with CBR for speed-up. They show how case-base size, coverage and solution
quality affect the utility. The authors find that varying these characteristics
significantly alters how the system responds to different case base sizes. This
indicates that the need for case deletion and indexing is strongly related to
requirements for solution quality and retrieval time. We will discuss this issue
later in the paper.

A proposed policy for case deletion with minimal effects on case base compe-
tence was presented by Smyth and Keane [20]. A footprint-driven method that
also accounted for utility gave the best test results. An alternative method was
proposed by Zhu and Yang [25] with the emphasis on careful addition of new
cases rather than on deleting old ones. Their method performed better than the
footprint deletion method, under some conditions.

A deliberate case addition process may be viewed as a form of case deletion
as well (i.e. by not adding cases that might otherwise have ended up in the case
base). From the perspective of more or less eager case base maintenance methods,
assuming an existing case base and only incremental updates, a considerate case
addition policy will generally be a more lazy approach than a deletion approach.
An even lazier approach is of course to keep all the cases, and rely on the retrieval
and adaptation methods to do the “deletion” on the fly.

One solution to the indexing problem is to apply suitable methods for refining
indexing features and matching weights. Jarmulak et al. [11] use genetic algo-
rithms to refine indexing features and matching weights. Another approach is to
view this problem from a meta level perspective, and use introspective learning
techniques to handle the refinement of indexes, triggered by retrieval failures [7,
4].

We are developing an introspective architecture for lazy meta-level reasoning
characterized by creating and combining multiple components to perform the
system’s reasoning processes [10]. Each component represents part of a reasoning

method and its parameters using a uniform interface, which can be used and
modified by the meta-level reasoner. This will enable selecting which reasoning
methods to use after a description of the problem to be solved is known.

Although it is known that laziness and indexing strategies impact each other
[1], we have not come across work which expressly views indexing also from a
maximally lazy perspective. This means to avoid building such indexes at all for
the purposes of improving search efficiency, as a way to avoid committing to eager
indexing decisions. Indexes may still be built, but in order to improve matching
quality only. A typical example is a structure of abstract indexes, which interpret
lower-level data in the input cases in order to achieve an improved understanding
of the case information and hence more accurate solutions.

Watson [24] discusses case base maintenance for Cool Air, a commercially
fielded CBR system that provides support for HVAC engineers. The system re-
trieves cases for similar previous installations, and Watson explains the case-base
maintenance required for the system, most notably the removal of redundant
cases from a rapidly growing case base. By the nature of the application do-
main, installing the system in different locations means that the same product
will operate under several similar conditions, and result in very similar cases
being created. In their client-server design the server selects a small set of cases
to be sent to the client, and the client then uses the engineers’ custom-tailored
similarity measure to rank them. The problem with this design is that many
redundant cases are sent to the client, and it was decided to remove the redun-
dant cases from the case base. Although primarily motivated by other purposes
than the utility problem, this type of case redundancy avoidance in client-server
architectures seems to be generally useful.

3 Describing and analyzing utility

In general, the utility of a reasoning system can be expressed as the benefit it
brings, minus the costs associated with the system. The benefits are typically
achieved over time while the system is in operation, while a large part of the
costs of the system are up-front, such as gathering expert knowledge, developing
the system and integrating it with the organization that will be using it. Another
large source of costs is the continued maintenance of the system, which is often
overlooked but should be included when the system is initially planned [24].

The benefit of a generated solution can be measured as its usefulness for
addressing the task at hand, which is primarily characterized by the solution
accuracy and solution time. When considered in this manner, the time taken
to solve a problem can be naturally expressed as a lessened benefit. Then the
direct costs associated with the problem solving are related to the resources
spent computing them, which are very small for typical systems.

For clarity, we define our use of the terms as follows:

General system utility: GSU The combined benefit of the reasoning system,
minus the associated costs. This consists of the solution usefulness for the
solutions generated by the system, the usability of the system for human

operators, and the costs associated with developing, running and maintaining
the system.

Solution usefulness: SU The benefit of a generated solution, estimated as a
function of solution accuracy, solution time and resource costs, not including
human factors.

Solution accuracy: SA The accuracy of a generated solution, which depends
on both the case base and the methods used by the system.

Solution time: ST The time it takes the system to solve a problem.

Resource cost: RC The cost of solving a problem. This is primarily the time
spent operating the systems, but also includes hardware costs that can po-
tentially be significant for long computations in large systems.

Using the same approach as Smyth and Cunningham [19] for analyzing these
concerns, we assume that the solution accuracy increases with a larger case
base, and that the solution time is divided into two parts: retrieval time, which
increases with a larger case base, and adaptation time, which decreases with a
larger case base (or stays the same). By noting that the retrieval time increases
with the size of the case base, which is unbounded [17], that the retrieval time
is similarly unbounded for any retrieval approach that can potentially reach all
the cases, and that the reduction in adaptation time is bounded (since it can
never be faster than 0 time units), we see that there will be some point where
adding further cases to the case base will slow down the total solution time.

The utility problem is most easily analyzed for speed-up learners, where the
solution time is of primary importance. We explore three different scenarios for
speed-up learners with different time complexities, and examine the different
amounts of utility degradation experienced by modeling the solution time ST
as a function of case base size N . We use a simplified model of a speed-up
learner, where the system will always produce the same correct answer, and the
only criterion for the solution’s utility will be its solution time. We model the
solution usefulness SU = 1/ST for such systems, ignoring the solution accuracy.

As reported by Smyth and Cunningham [19], when increasing the size of the
case base, the solution time for a case-based speed-up learner will typically con-
sist of an initial rapid improvement, followed by a continuing degradation as the
retrieval part begins to dominate the total time spent to solve the problem. For
a typical speedup-learner, the total solution time will initially be approximately
monotonically decreasing, followed by an approximate monotonic increase, and
the optimal solution time and preferred case base size will be where the rate
of increase in retrieval time matches the rate of decrease in adaptation time.
The exact behavior of the total solution time and the order of magnitude of this
preferred case base size depends greatly on the algorithmic complexity classes of
the algorithms used, and in general there is no guarantee that the solution time
will follow this pattern at all. The exact characteristics also depend on how the
case base content is created and maintained, since a maintained case base can
have different case distributions and behave quite differently than an approach
retaining all cases.

Fig. 1 shows the solution time for an idealized speed-up learner, where re-
trieval is a linear search through the case base, adaptation time is proportional to
the distance to the retrieved case, and there is no overhead: ST = N/5+100/N .
In this situation the efficiency of the system initially improves quickly, and then
starts degrading slowly as the increased time to perform retrieval eventually be-
comes greater than the time saved during adaptation. In systems with retrieval
and adaptation algorithms displaying this kind of behavior, the solutions will be
generated most quickly when retrieval and adaptation times are approximately
equal, since that coincides with their derivatives having the same magnitude and
opposite signs. Smyth and Cunningham [19] report very similar results to this
speed-up learner scenario from experimenting with the PathFinder system.

 0

 20

 40

 60

 80

 100
 0 20 40 60 80 100

Ti
m

e

Case base size

Minimum: 8.9 time units at 22.4 cases

Combined retrieval + adaptation
O(N) retrieval

O(1/N) adaptation

Fig. 1. Retrieval, adaptation and combined solution time compared to case base size
for a speed-up learner using an O(N) retrieval algorithm and a O(1/N) adaptation
algorithm.

Fig. 2 shows the solution time for similar speed-up learning systems, but
using different algorithms. The graph on the left uses an indexing scheme for
retrieval that causes the retrieval step to run in O(log N) time, and with a
comparatively larger constant factor (5 vs 0.2) than the previous example: ST =
5 ∗ ln(N) + 100/N . With this change to the retrieval function, the slowdown
associated with adding more cases to the case base happens very slowly, and the
total solution time for the full case base is just 20% slower than the minimum
solution time, even though the full case base is 5 times larger. The graph on the
right shows a much more drastic increase in solution time. A more complicated
O(N log N) case retrieval algorithm is shown that compares the retrieved cases
against each other, and case adaptation has a significant overhead of 20 time
units: ST = N ∗ ln(N) + 100/N + 20. In this situation the combined solution
time increases quickly as more cases are added beyond the optimal amount. For

domains where this type of algorithm is desirable, a similar increase in solution
quality would be expected, otherwise the case base should be kept relatively
small through aggressive case base content maintenance. Due to the very limited
number of cases the system can handle before slowing down, these latter types
of algorithms appear to be a poor choice for pure speed-up learners, although
the constant factors could potentially be of very different magnitudes for some
domains. These alternative combinations scale very differently, and illustrate the
importance of examining the algorithms used when analyzing the effect of larger
case bases.

 0

 20

 40

 60

 80

 100
 0 20 40 60 80 100

Ti
m

e

Case base size

Minimum: 20 time units at 20 cases

Combined retrieval + adaptation
O(log N) retrieval

O(1/N) adaptation

 0

 20

 40

 60

 80

 100
 0 20 40 60 80 100

Ti
m

e

Case base size

Minimum: 47.4 time units at 6 cases

Combined
O(N log N)

O(1/N) w/overhead

Fig. 2. Retrieval, adaptation and combined solution time compared to case base size
for two other speed-up learner scenarios: On the left, using an O(log N) retrieval algo-
rithm and a O(1/N) adaptation algorithm. On the right, using an O(N log N) retrieval
algorithm and a O(1/N) adaptation algorithm with overhead.

For general case-based reasoners, the utility function becomes much more
complicated. When still examining only the usefulness of solving one problem
while the system is running, and just moving away from the simplified speed-
up learner model, we need to also include the accuracy of the solution in our
evaluations. The impact the accuracy has on the usefulness of the system will
vary greatly based on the domain and the specifics of the application.

Smyth and Cunningham [19] report empirical results from the PathFinder
system, where at one point the quality of solutions increased from 94% to 96%,
while the solution time increased by 50%. Whether such a trade-off is considered
beneficial or not depends on the application and the initial starting values for
the retrieval accuracy and solution time. For a speed-up learner this might be
unacceptable, while for many other applications a 33% reduction in errors (from
6% to 4%) at the expense of waiting longer or using two computers instead of one
would be a great improvement. As in the fielded Cool Air system, the solution
time might simply be considered acceptable and not be a problem that has to be
addressed at all, and then a larger case-base might be purely beneficial without
encountering this trade-off.

4 Indexing vs. no indexing

There are many possible indexing strategies for speeding up retrieval, and their
effects are highly dependent on the domain and the similarity measures used. Se-
lecting a good indexing strategy can often require significant expert knowledge,
although various automated methods exist [11, 7, 4] for refining the indexing
strategy. This can be particularly helpful for index maintenance, since an ap-
propriately chosen method can potentially handle most indexing maintenance
operations without manual intervention.

However, from a lazy learning perspective, an indexing structure that allows
the retrieval method to only consider a subset of the case base is an eager
optimization, which is made before all the potentially useful information about
the target problem is known, and is therefore not always appropriate.

In systems that handle thousands of cases or less, the processing time is
not necessarily a critical factor, and might very well increase slower than the
increase in processing power available over time, i.e. the solution usefulness SU
is primarily a function of the solution accuracy SA. This is particularly true for
knowledge-intensive CBR, where less than a hundred cases is common (but the
time required to perform individual similarity measurements is often extensive).

By matching with every case in the case base, the retrieval method is guar-
anteed not to miss any cases in the case base, and without needing to regularly
maintain the indexing structures.

Unlike pure speed-up learners, producing results as quickly as possible is
rarely the main concern for fielded CBR systems. The cost of developing and
maintaining a system is usually much larger than the cost of using and main-
taining the hardware it runs on, and the direct resource cost RC can sometimes
even be considered negligible. CBR systems with extensive reasoning also do
not usually act as speed-up learners, since they can actually produce better so-
lutions with a larger case base. For such systems the utility problem is a trade-off
between solution quality and the efficiency degradation associated with a large
case base [19].

As an alternative to purely eager indexing, footprint-based retrieval [21] al-
lows for a kind of mix of indexing and similarity measurements. The indexing
is eagerly pre-generated based on competence evaluations performed before the
input problem is known. During retrieval, the index is used to quickly identify
what is believed to be the most relevant knowledge items, which are then eval-
uated lazily with full similarity-based knowledge. Although the retrieval is less
efficient than purely eager methods, this partially lazy approach can produce
good results for some domains.

For the commercially fielded Cool Air [24] CBR system, processing time was
much cheaper for the company than consultancy time for developing the system.
The efficiency slow-down associated with an increasing case base did not become
a problem, even though the case base doubled over two years.

In another commercially fielded system, the DrillEdge system for fault pre-
diction in oil well drilling [22], case retrieval is an automatic process triggered
by a pattern in the continuous stream of drilling data. The cases are indexed by

abstract features derived from the numerical drilling data stream. This is done
in order to improve the matching process for retrieval of the most relevant cases.
The indexes are not used to improve retrieval efficiency - the case base is always
searched sequentially. As long as the number of cases is in the range of hundreds,
this is not regarded as a performance problem.

For some applications, like the one just mentioned, solution quality is of
utmost importance. In oil well drilling, the costs of time lost due to unwanted
events can be huge, since drilling operations typically cost around 200 000 USD
per day [18]. In this case the value of the positive utility associated with higher
quality solutions is of a different order of magnitude than typical costs of negative
utility caused by decreased efficiency. For the knowledge-intensive oil well drilling
system, the main cost of a large case base is the amount of expert knowledge
required, not the computer systems it runs on.

As an alternative to performing eager indexing at all, a two-step approach [6]
to case retrieval has often been employed for systems with expensive retrieval op-
erations, e.g. for knowledge-intensive CBR systems. This consists of first using a
fast and resource-efficient scan through the case base to identify relevant knowl-
edge, and then performing more advanced (and comparatively slow) reasoning
for this restricted set of cases. This is conceptually very similar to indexing, but
is done using a lazy approach, entirely after the input problem query is known.

In this way, there is no need to update indexing structures, and more powerful
methods can be performed for identifying relevant knowledge when you already
know the problem to be solved. Similarity assessment is usually very important
for CBR systems, because there is often no easy way to model the structure of the
entire problem space, and there may even be no expert knowledge that directly
applies to all problem instances in general. Using similarity measurements to
locally identify relevant knowledge for a specific problem is thus likely to produce
better results than pre-generated structures.

To perform large numbers of similarity assessments quickly, it might be nec-
essary to increase the amount of computational resources available by examining
the cases in the case base in parallel. Many modern distributed computing frame-
works available for processing very large data sets in parallel are based around
ideas similar to the MapReduce [5] algorithm. MapReduce works by first chop-
ping up a problem into many parts, then distributes each of these parts across a
cluster of computers and each node processes only a subset of the problems. The
answers are then returned to a master node, which combines them to create a
final answer for the entire problem. This is very similar to parallel case retrieval,
where each case is assigned a similarity score and then ranked at the end.

While this form of case evaluation producing independent results for every
query-to-case comparison does not let us express the most general forms of case
retrieval, they are sufficient for most systems that are used in practice. The kind
of similarity assessment methods supported by this approach are also typically
more flexible than those supported by common indexing schemes. Avoiding the
need for additional expert knowledge that is often required to create a good
indexing solution is another potential benefit of this approach.

For commercial applications, these kinds of large parallel processing frame-
works are typically used to process terabytes or petabytes of data, and provide a
possible means to perform full sequential evaluations for the complete case base
during retrieval even for very large case bases.

5 Case base maintenance

Case-based reasoning system maintenance is important and can involve processes
that modify all parts of the system, including updates to each of the knowledge
containers. Most often this includes reducing the number of cases in the case
base, which is primarily useful for two purposes:

– Reducing the size of the case base used by retrieval methods, which can make
retrieval faster.

– Reducing the space required for storing the case base.

Various case base content maintenance algorithms exist for reducing the size
of the case base, while optimizing the remaining cases according to some criteria.
A fast and simple content maintenance strategy is to delete cases at random,
which has been reported to produce good results [16]. Since the case base es-
sentially becomes a random subset of all encountered cases, or effectively just
a smaller case base, this strategy also has the added benefit of maintaining the
same case distribution as the encountered cases, on average. Other approaches
for content maintenance usually examine the relations between cases in the case
base, and e.g. attempt to maximize the coverage of the remaining cases in the
reduced case base through adding, deleting or combining cases [20].

We conducted a set of experiments to compare these two approaches, using a
random set of cases versus the coverage-based case addition algorithm proposed
by Zhu and Yang [25] as the content maintenance strategy. The results shown in
figs. 3-5 are the average from running each test 10 times. Cases were described
by 5 features, each with values ranging from 0 to 1, and new cases were picked
uniformly from this 5-dimensional space. Euclidean distance was used as the
basis for the similarity measure, and a case was considered to be solvable by
another case for the purpose of competence evaluation if the distance between
the two cases was less than 0.25. We used the same similarity measure to estimate
the solution accuracy SA on the basis of the distance between the retrieved case
and the query, which is optimistic and more advantageous for the maintained
case base strategy than a real world scenario, since the competence evaluations
will be flawless. Thus using larger case bases can be expected to usually be
at least as good compared to this kind of computationally expensive content
maintenance strategy for real-world systems as in the experiments.

Fig. 3 shows the estimated coverage and error for an optimized case base
of size N compared to a case base consisting of N random cases. The case
base generated by the case addition algorithm has higher resulting coverage
(measured as the covered proportion of new queries randomly generated from
the underlying domain, which competence-driven maintenance strategies seek

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

C
ov

er
ag

e
an

d
er

ro
r

Case base size

Coverage

Error

Fig. 3. Coverage and error comparing retaining the full case base of size N (straight
lines) and using a content maintenance strategy (dotted lines) to create a case base of
size N based on a larger initial set of 5000 cases. Higher coverage and lower error is
better. The time required to perform the maintenance is not considered. In this setting
the maintenance strategy outperforms retaining all cases, with higher coverage and
slightly lower error.

to optimize), and lower error (measured as the average distance from the best
retrieved case to randomly generated new queries). Only the sizes of the case
bases are considered, and the computations required to perform the maintenance
operations are ignored. Approximately this situation can occur when there are
established procedures to run case base maintenance while the system is not
being used, e.g. at night, during weekends or during vacations.

However, the computational costs of running case base content reduction
algorithms can be extensive. Figs. 4 and 5 show the coverage and error rates
for the same two case base content maintenance strategies, but compared ac-
cording to the time required to perform both maintenance and retrieval. This
was examined by running experiments for many different combinations of ini-
tial and reduced case base sizes, and choosing the Pareto efficient combinations
that gave better results than any faster combinations. The size of the resulting
reduced case base size used for retrievals is included in the figures. For each
data point the case base maintenance was run only once, and its potentially
costly computation was amortized over a large number of retrievals. However,
this maintenance cost can still be very high, depending on the number of re-
trievals performed compared to maintenance operations. The examples shown
in the figures consists of an up-front case maintenance step followed by 1000 and
10000 retrievals respectively (chosen as examples of large numbers of retrievals,
since more retrievals favors the maintenance strategy), and shows the combined
time for these operations. Even with this relatively large number of retrievals,
the simpler strategy of retaining all cases generally performs as well or better

 0

 0.2

 0.4

 0.6

 0.8

 1

0M 1M 2M 3M 4M 5M
 0

 1000

 2000

 3000

 4000

 5000

C
ov

er
ag

e
an

d
er

ro
r

C
as

e
ba

se
 s

iz
e

Similarity measurements, in millions
1000 retrievals

Coverage

Case base size

Error

Fig. 4. Coverage and error shown according to the amount of computation required
(measured as number of similarity measurements), when retaining the full case base
(straight lines) and using a content maintenance strategy (dotted lines). For 1000 re-
trievals, the larger case bases supported by not having a maintenance cost means that
the strategy of retaining all cases performs better, with higher coverage and lower error.

than the content maintenance strategy, due to supporting larger case bases in
the same time frame. This means that using a maintenance strategy to reduce
the case base size for efficiency reasons may sometimes be counter-productive,
in addition to size reduction being an eager strategy that limits the potential
options available for further problem solving.

The other aspect of reducing the number of cases in the case base is the
reduced storage capacity required to hold the case base. Current computer sys-
tems intended for personal use can store hundreds of gigabytes of data, which is
much much larger than many typical CBR application case bases. Maintaining
the set of cases exposed to the retrieval method can be a very useful approach
for some applications, but the case base used for retrieval at any given moment
does not have to be the full set of cases archived by the system.

Based on this observation, we conclude that many practical CBR system can
instead flag the cases as no longer being active and store them in another loca-
tion that is not searched by the retrieval methods, since conserving disk space
is not required for systems that do not generate vast amounts of data. In these
situations the archival storage can be done at negligible cost, and provide the ad-
vantage that deletions are no longer completely irreversible. During later system
maintenance some time in the future, the reason for the original deletion may
no longer be relevant or the algorithms used by the system may have changed,
and in such cases it would be beneficial to be able to undo such eager deletion
optimizations, in the spirit of lazy learning.

 0

 0.2

 0.4

 0.6

 0.8

 1

0M 10M 20M 30M 40M 50M
 0

 1000

 2000

 3000

 4000

 5000

C
ov

er
ag

e
an

d
er

ro
r

C
as

e
ba

se
 s

iz
e

Similarity measurements, in millions
10000 retrievals

Coverage

Case base size

Error

Fig. 5. Even when performing 10000 retrievals, the strategy of retaining all cases gen-
erally performs slightly better, with higher coverage and lower error.

6 Conclusions

In this paper we have examined the utility problem from a lazy learning per-
spective, as it applies to speed-up learners and general case-based reasoners. The
two primary approaches to addressing the utility problem are through indexing
and by reducing the size of the case base itself during case base maintenance.

These approaches are eager compared to the lazy core CBR process, and we
have shown how many practical CBR systems do not require the use of these
eager optimizations and can be limited by committing to decisions prematurely.

References

1. Aha, D.W.: The omnipresence of case-based reasoning in science and application.
Knowledge-Based Systems 11, 261–273 (1998)

2. Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-oriented
matching: A new research direction for case-based reasoning (2001)

3. Chaudhry, A., Holder, L.B.: An empirical approach to solving the general utility
problem in speedup learning. In: IEA/AIE ’94: Proceedings of the 7th international
conference on Industrial and engineering applications of artificial intelligence and
expert systems. pp. 149–158. Gordon and Breach Science Publishers, Inc., Newark,
NJ, USA (1994)

4. Cox, M.T.: Multistrategy learning with introspective meta-explanations. In: Ma-
chine Learning: Proceedings of the Ninth International Conference. pp. 123–128.
Morgan Kaufmann (1992)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI’04: Proceedings of the 6th conference on Symposium on Operating Sys-
tems Design & Implementation. pp. 137–150. USENIX Association, Berkeley, CA,
USA (2004)

6. Forbus, K.D., Gentner, D., Law, K.: Mac/fac: A model of similarity-based retrieval.
Cognitive Science 19(2), 141–205 (1995)

7. Fox, S., Leake, D.B.: Combining case-based planning and introspective reasoning.
In: Proc. of the 6th Midwest Artificial Intelligence and Cognitive Science Society
Conference. pp. 95–03 (1995)

8. Francis, A., Ram, A.: A comparative utility analysis of case-based reasoning and
control-rule learning systems. In: In Proceedings of the Eighth European Confer-
ence on Machine Learning. pp. 138–150. Springer (1995)

9. Francis, A.G., Ram, A.: The utility problem in case based reasoning (1993)
10. Houeland, T.G., Aamodt, A.: Towards an introspective architecture for meta-level

reasoning in clinical decision support systems. ICCBR 2009, 7th Workshop on CBR
in the Health Sciences (2009)

11. Jarmulak, J., Craw, S., Rowe, R.: Genetic algorithms to optimise cbr retrieval. In:
EWCBR. pp. 136–147 (2000)

12. Koton, P.A.: A method for improving the efficiency of model-based reasoning sys-
tems. Hemisphere Publiching Corporation (1989)

13. Leake, D.B., Smyth, B., Wilson, D.C., Yang, Q.: Introduction to the special issue
on maintaining case-based reasoning systems. Computational Intelligence 17(2),
193–195 (2001)

14. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and
directions. In: Advances in Case-Based Reasoning:Proceedings of the Fourth Eu-
ropean Workshop on Case-Based Reasoning. pp. 196–207. Springer-Verlag (1998)

15. de Mántaras, R.L., McSherry, D., Bridge, D.G., Leake, D.B., Smyth, B., Craw,
S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K.D., Keane, M.T., Aamodt,
A., Watson, I.D.: Retrieval, reuse, revision and retention in case-based reasoning.
Knowledge Eng. Review 20(3), 215–240 (2005)

16. Markovitch, S., Scott, P.D.: The role of forgetting in learning. In: Proceedings of
The Fifth International Conference on Machine Learning. pp. 459–465. Morgan
Kaufmann, Ann Arbor, MI (1988)

17. Minton, S.: Quantitative results concerning the utility of explanation-based learn-
ing. Artif. Intell. 42(2-3), 363–391 (1990)

18. Shokouhi, S.V., Aamodt, A., Skalle, P., Sørmo, F.: Determining root causes of
drilling problems by combining cases and general knowledge. In: McGinty, L., Wil-
son, D.C. (eds.) ICCBR. LNCS, vol. 5650, pp. 509–523. Springer (2009)

19. Smyth, B., Cunningham, P., Cunningham, P.: The utility problem analysed - a
case-based reasoning perspective. In: Proceedings of the Third European Workshop
on Case-Based Reasoning. pp. 392–399. Springer Verlag (1996)

20. Smyth, B., Keane, M.T.: Remembering to forget: A competence-preserving case
deletion policy for case-based reasoning systems. In: Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence. pp. 377–382. Morgan Kauf-
mann (1995)

21. Smyth, B., McKenna, E.: Footprint-based retrieval. In: In Proceedings of the Third
International Conference on Case-Based Reasoning. pp. 343–357. Springer Verlag
(1999)

22. Sørmo, F.: Real-time drilling performance improvement. Scandinavian Oil & Gas
Magazine, No. 7/8 2009 (2009)

23. Tambe, M., Newell, A., Rosenbloom, P.S.: The problem of expensive chunks and
its solution by restricting expressiveness. Machine Learning 5, 299–348 (1990)

24. Watson, I.: A case study of maintenance of a commercially fielded case-based rea-
soning system. Computational Intelligence 17, 387–398 (2001)

25. Zhu, J., Yang, Q.: Remembering to add: Competence-preserving case-addition poli-
cies for case-base maintenance. In: IJCAI’99: Proceedings of the 16th international
joint conference on Artifical intelligence. pp. 234–239. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1999)

84

Paper C

An Efficient Random Decision
Tree Algorithm for Case-Based
Reasoning Systems

Author: Tor Gunnar Høst Houeland

Published in: Murray, R.C., McCarthy, P.M. (eds.) Proceedings of the Twenty-
Fourth International Florida Artificial Intelligence Research Society Conference,
pp 401-406. AAAI Press (2011)

https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2639

My contributions: I developed the RDT algorithm, research, and experiments pre-
sented in the paper, and wrote the text (sole author).

85

An Efficient Random Decision Tree Algorithm for Case-Based Reasoning Systems

Tor Gunnar Houeland
Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
houeland@idi.ntnu.no

Abstract

We present an efficient random decision tree algorithm for
case-based reasoning systems. We combine this algorithm
with a simple similarity measure based on domain knowledge
to create a stronger hybrid algorithm. This combination is
based on our general approach for combining lazy and eager
learning methods. We evaluate the resulting algorithms on a
case base of patient records in a palliative care domain. Our
hybrid algorithm consistently produces a lower average error
than the base algorithms.

Introduction
Lazy learning approaches do not draw conclusions until it
is necessary, allowing them to collect all available informa-
tion before doing any generalization. This has the poten-
tial advantage of including highly relevant information that
an eager approach would not have access to, and adapting
the reasoning to the particular characteristics of the problem
query to solve. The drawback is that the system’s reasoning
(and computations) will only be performed all at the very
end when an answer is required. Eager methods have the
advantage that parts of their reasoning can be precomputed
during training, and they only need to store abstract gen-
eralizations which can typically take only a fraction of the
storage space.

In this paper we examine a hybrid approach that uses a
modified version of an eager method (random decision trees)
that can be partially precomputed and partially adapted to
the particular problem query. We examine the results for
determining similarity in a data set describing the results of
palliative care for cancer patients, which is an ongoing topic
of investigation in our research group.

For our random decision tree (RDT) algorithm the forest
of random trees can be grown once before the system be-
gins reasoning about cases, and we use internal data struc-
tures that can be incrementally updated in an efficient man-
ner when new cases are added to the case base. The data
structures additionally support efficiently considering only
selected subsets of the case base as training data at runtime.
This capability is combined with a simple similarity measure
based on domain knowledge to simulate having trained the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm on only the most relevant cases in a computation-
ally inexpensive manner. This high computational efficiency
and ability to be integrated with other uses of cases are the
primary strengths of our RDT algorithm.

In the next section we summarize some earlier research
results and relate it to our work. This is followed by a de-
scription of our RDT-based experiment in the domain of pal-
liative care for cancer patients. We describe and compare
4 different algorithms and discuss empirical results for run-
ning the algorithms on a case base of palliative care patients.
Concluding remarks end the paper.

Related Research
The topic of indexing cases beforehand to support efficient
retrieval during problem solving has been extensively stud-
ied in the literature. A popular form of indexing structure is a
tree with cases at the leaf nodes. One early example of such
a tree-based indexing structure used in case-base reasoning
is a kd-tree (Wess, Althoff, and Derwand 1994), which par-
titions the indexing space into disjoint areas. Each leaf node
is called a bucket, and contains the cases within a particular
area of the indexing space.

An ensemble method combines multiple models to pro-
duce a better result than any individual model would. This
approach has also been used for indexing trees, where multi-
ple trees are created and combined to address a single prob-
lem. Perhaps the most well-known example of such a tree
ensemble is the Random Forest (RF) classifier (Breiman
2001). RF grows a number of decision trees based on boot-
strap samples of the training data. For each node of a tree,
m variables are randomly chosen and the best split based on
these m variables is calculated based on the bootstrap data.
Each decision tree results in a classification and is said to
cast a vote for that classification, and the ensemble classi-
fier returns the class that received the most votes. RF can
also compute proximities between pairs of cases that can
be used for clustering and data visualization, and as a sim-
ilarity measure for case-based reasoning. We use a similar
concept of proximity to measure similarity in our random
decision tree algorithm.

Diversity is an important aspect of an ensemble classifier
that affects its accuracy. Bian and Wang (2007) found that
the performance of an ensemble learning approach varied
considerably for different applications. They studied homo-

geneous and heterogeneous ensembles and found connec-
tions between diversity and performance, and an increased
diversity for heterogeneous ensembles.

Gashler et. al. (2008) examined ways to increase the
diversity for ensembles of decision trees. They compared
an approach that split on randomly selected attributes as a
means to increase diversity, with an approach that combined
multiple tree algorithms to increase diversity. For our ran-
dom decision tree algorithm we similarly use entirely ran-
dom attributes, and also perform the splits at random.

Ferguson and Bridge (2000) describe a generalization of
similarity measures they call similarity metrics, and build
upon a way of combining similarity metrics called prioriti-
zation. This approach uses an indifference relation to pri-
oritize a secondary metric when no significant difference is
found based on the primary similarity metric. In our ap-
proach we also use two similarity measurements, but they
are integrated in a hybrid combination.

Richter (1995) introduced the knowledge container model
for CBR systems. In this model the system’s knowledge
is categorized into four categories: case vocabulary, cases,
similarity assessment and adaptation knowledge. A distinc-
tion was also made between compiled knowledge, which is
”compiled” in a very general sense before actual problem
solving begins, and interpreted knowledge that is assessed
at run time, during the process of problem solving. In our
research we integrate the similarity assessment with the in-
ternal storage of cases, and develop a method for efficiently
”compiling” the similarity knowledge for an ensemble of
random decision trees.

The utility problem occurs when additional knowledge
learned decreases a reasoning system’s performance instead
of increasing it (Minton 1990; Smyth and Cunningham
1996). Theoretically this will always occur for a CBR sys-
tem when the system’s case base increases without bound,
and has therefore been the subject of considerable research,
since the problem remains relevant even as computers be-
come faster and cheaper.

Patterson et. al. (2003) examine efficient retrieval as a
means to reduce the effects of the utility problem. They
present two indexing approaches that give efficiency gains
of up to 20 times faster retrieval, with a small reduction in
case base competency. As a similar trade-off, our research
focuses on a highly efficient method for lazy reasoning, with
a limitation on the type of decisions that can be performed
to determine similarity.

In an earlier study (Houeland and Aamodt 2010), we sug-
gest that the usefulness of an optimization should be mea-
sured by the effect it has on the reasoning system’s overall
utility. We continue this line of reasoning in the research
presented here, by examining the trade-off between accu-
racy and speed that occurs in the developed algorithms.

Random Decision Tree Experiment
Our random decision tree (RDT) algorithm is an example of
a general approach to combining machine learning methods
with case-based reasoning. Like a traditional CBR approach
we retrieve the local cases nearest to our input query (shown

Figure 1: Selecting a similarity-based local case subset for
use as training data. The cases within the circle are retrieved
as the closest neighbors of the marked case, and are used to
train an independent learning algorithm.

in figure 1), but we retrieve an unconventionally large num-
ber of cases (in the following experiment we retrieve half the
case base). We run a machine learning algorithm on this sub-
set of cases as training data, partially combining the lazy and
local attributes of a CBR retrieval with the eager and global
methods often used for more traditional machine learning
algorithms.

This combination is based on the intuition that CBR sim-
ilarity measures can often easily express rough case rele-
vance estimates based on domain knowledge, while eager
machine learning algorithms are typically very effective at
selecting precisely the best option among possible alterna-
tives, but without the beneficial features of laziness.

A drawback of this approach is that a straightforward ap-
plication of an eager method would have to be trained from
scratch on the case subset during problem solving. This can
be prohibitively expensive because eager methods typically
perform a lot of computations that are normally amortized
over many subsequent problem solving sessions.

We develop an RDT variant where the storage of the tree
knowledge is inverted, by associating each case with its re-
sult for every tree and storing the knowledge with the cases.
This is in contrast to the more traditional approach of cre-
ating the tree structure based on the training data and im-
plicitly storing the knowledge in the trees. Our variant al-
lows very efficient incremental updates for additional train-
ing data, i.e. learning new cases one by one.

In this experiment we use a forest of randomly grown
trees to determine the similarity between two cases. Each
tree is a fully grown binary tree of height 5, where one par-
ticular measurement is compared to a threshold value at each
node.

An example tree generated by our implementation is
shown in figure 2. The root node ”Addiction < 0.5739”
in the example compares the patient’s addiction value to
the specified threshold 0.5739, and continues down the left
branch marked with a dotted line in the figure if it’s be-
low the threshold value and otherwise down the right branch
marked with a solid line.

Figure 2: A randomly generated decision tree for the pallia-
tive care domain.

Each tree sorts a case into one of 16 leaf node buckets, or
no bucket if a node would compare a measurement the case
does not include (because it is a partial patient record). The
forest of trees acts as a measure of similarity between cases,
where two cases are said to be more similar if they’re in the
same bucket for a higher number of trees.

This is the same as the proximity value uses in the Ran-
dom Forest (RF) classifier, but with a different algorithm for
growing trees. While the RF classifier generates strong trees
based on the training data, we generate completely random
trees.

This aspect is more similar to Random Decision Trees
(Fan et al. 2003) and the Max-diverse Ensemble (Liu, Ting,
and Fan 2005) algorithm, which was shown to have nearly
comparable accuracy to RF but without using bootstrap sam-
ples based on the training set.

The important advantage of completely random trees for
our experiment is that growing the trees does not depend on
the training data, which means that a single forest can be
generated once and used for case bases with different sets
of case instances. This allows us to keep the same precom-
puted trees when adding a case to the case base, and only
incrementally update the data structures that are used to rep-
resent the cases.

Algorithms
For each new case we go through all the trees and compute
which bucket the case belongs to, and for each case we store
these computed bucket values for each tree. The advantage
of this representation is that the proximity of two cases can
be computed by only iterating through the stored bucket val-
ues which can be implemented efficiently.

For our experiments we are interested in combining this
knowledge-lean random decision forest method with a sim-
ple CBR-like similarity measurement based on variables
medical doctors consider relevant for pain classification.
This similarity measurement is the sum of the normalized
differences of patients’ pain intensity, breakthrough pain,
pain mechanism, psychological distress, cognitive function-
ing, addiction and pain localization.

We compare 4 different similarity methods: the random
decision forest, the least difference in relevant variables, a
completely random approach, and a hybrid approach based
on the random decision forest plus the differences in relevant
variables.

Unfortunately the European Palliative Care Research Col-
laborative (EPCRC) has not been able to reach a consensus
on how to classify pain, so there is no clear ”solution” or
”answer” for our cases. We have decided to estimate the
similarity by comparing the difference in worst pain and
average pain experienced after three weeks and basing our
comparisons only on the data acquired before three weeks
had passed.

Our data set consists of 1486 cases with 55 numerical fea-
tures from the first two weeks as the problem description,
and these two pain classifications as the solution. This is rel-
evant because the main palliative treatment is started during
week 2 and the pain experienced afterwards depends on the
treatment and is of utmost importance for a patient receiving
palliative care. Our presented research uses the difference in
pain levels as a means to indirectly estimate the correctness
of the computed similarity.

We evaluate a similarity by measuring this combined dif-
ference in worst pain and average pain between the input
query and the case in the case base that was determined to
be the most similar, in effect measuring the performance of
using the similarity measure for a 1-NN classifier. We sim-
ulated problem solving by going through each of the patient
cases in order, attempting to solve them using the cases in
the case base so far and then adding the case to the case
base.

The observed results are sensitive to both random chance
and the order of the cases in the case base. To achieve a
fair comparison we generated 100 different versions of input
where the order of the patient data cases had been randomly
shuffled, and used the same set of 100 input orders for each
similarity method. We compared the average measured dif-
ference for all problem solving attempts for the 100 different
orders between the different similarity methods (excluding
the first case in each order, when the case base is empty).
This approach was used to empirically evaluate 4 different
similarity methods for our domain, which are presented in
increasing order of complexity.

Algorithm 1 RANDOM-SIMILARITY

1. Cases← EMPTY

2. for each patient p ∈ PATIENTS

3. do q← CREATE-INPUT-QUERY(p)

4. x← RANDOM-INTEGER(1, length[Cases])

5. best-case← cases[x]

6. � Use best-case as the solution for query q

7. APPEND(Cases, p)

RANDOM-SIMILARITY simply chooses a random case
from the case base and naturally gives the worst results and
an average error of about 4.98, but is a baseline to work
against that signifies no correlation to real similarity. Like
the other algorithms it is used to select a case best-case as
the solution (line 6) in a case-based reasoning system, which
is afterwards learned and added to the case base before the
next query is received. Line 3 extracts the problem descrip-
tion for a case, which in our domain is the patient data from
the first two weeks.

Algorithm 2 LEAST-DIFFERENCE

1. Cases← EMPTY

2. for each patient p ∈ PATIENTS

3. do q← CREATE-INPUT-QUERY(p)

4. closest←∞
5. best-case← NIL

6. for each case c ∈ Cases
7. do diff ← CBR-DIFFERENCE-MEASURE(q, c)

8. if diff < closest
9. then closest← diff

10. best-case← c
11. � Use best-case as the solution for query q
12. APPEND(Cases, p)

LEAST-DIFFERENCE is a straight-forward CBR system
that uses the simple CBR-DIFFERENCE-MEASURE based
on the normalized differences in the 7 variables a medical
doctor expected to be relevant. Using this method as essen-
tially a 1-NN classifier gives an average error of about 4.55.

Algorithm 3 N -RANDOM-TREES

1. Cases← EMPTY

2. Buckets← EMPTY

3. Trees← GENERATE-TREES(N)

4. for each patient p ∈ PATIENTS

5. do q← CREATE-INPUT-QUERY(p)

6. Buckets[q]← COMPUTE-TREE-BUCKETS(q, Trees)

7. most-similar← (−∞)

8. best-case← NIL

9. for each case c ∈ Cases
10. do sim ← COMPUTE-PROXIMITY(Buckets[q],

Buckets[c])

11. if sim > most-similar

12. then most-similar← sim

13. best-case← c

14. � Use best-case as the solution for query q

15. APPEND(Cases, p)

N -RANDOM-TREES is based on our approach for effi-
ciently using random decision trees in a CBR system. The
GENERATE-TREES procedure builds N fully grown binary
trees of height 5, which is stored as an array of 15 attribute-
threshold pairs that represent the nodes in the tree. When
generating a tree, the attribute to compare at each node is se-
lected randomly, and the threshold is set to a random value
chosen from that attribute’s range of possible values. For our
experiment we do not have the domain knowledge to deter-
mine the true distribution of possible attribute values. For
simplicity we choose to select uniformly random values be-
tween the highest and lowest values that are contained in the
data set.

The COMPUTE-TREE-BUCKETS procedure computes the
resulting bucket for each of the N trees and returns the pre-
viously described N -value representation that is used for
efficient comparisons. The COMPUTE-PROXIMITY proce-
dure iterates through the bucket values for two cases and
returns the number of matching values, i.e. the number of
trees where the two cases end up in the same leaf node.

Algorithm 4 N -HYBRID

1. Cases← EMPTY

2. Buckets← EMPTY

3. Trees← GENERATE-TREES(N)

4. for each patient p ∈ PATIENTS

5. do q← CREATE-INPUT-QUERY(p)

6. Buckets[q]← COMPUTE-TREE-BUCKETS(q, Trees)

7. Distance← EMPTY

8. for each case c ∈ Cases

9. do Distance[c] ← CBR-DIFFERENCE-
MEASURE(q, c)

10. Closest-Cases ← The closest half of Cases sorted
according to Distance

11. most-similar← (−∞)

12. best-case← NIL

13. for each case c ∈ Closest-Cases

14. do sim ← COMPUTE-PROXIMITY(Buckets[q],
Buckets[c])

15. if sim > most-similar

16. then most-similar← sim

17. best-case← c

18. � Use best-case as the solution for query q

19. APPEND(Cases, p)

 4

 4.2

 4.4

 4.6

 4.8

 5

1 10 100 1k 10k 100k

Er
ro

r

Trees

Random trees
Hybrid

Random similarity

Least difference

Figure 3: Measured error in the palliative care domain com-
pared to the number of trees for our 4 algorithms. (Lower
error is better.)

N -HYBRID is a hybrid combination of the LEAST-
DIFFERENCE approach and our efficient random decision
tree implementation. For a given problem query it considers
only the closest half of the case base, as measured by the
CBR-DIFFERENCE-MEASURE function. This hybrid ap-
proach is proposed as a general way to combine similarity
measures based on domain knowledge with knowledge-lean
methods, and can be straight-forwardly adapted to ensem-
bles of classification trees.

In our domain, the CBR-DIFFERENCE-MEASURE acts as
a domain knowledge-based guard against spurious similar-
ities detected by the random trees. Our random forest im-
plementation performs an unguided similarity comparison,
without considering whether that similarity applies for clas-
sifying pain or not. The pain treatment domain knowledge
present in the CBR-DIFFERENCE-MEASURE function com-
plements the ”raw” similarity computed by the trees, com-
bining the two diverse knowledge sources in a CBR sys-
tem in a way that has some similarities to the approaches
used for very heterogeneous combinations in ensemble clas-
sifiers. Just as for ensemble classifiers these combinations
do not necessarily improve performance for CBR systems if
the knowledge sources do not complement each other.

In our experimental setup where the first similarity mea-
sure selects a local case subset that contains a great number
of cases (half the original cases), the effect of the second
similarity measure that reduces this down to a single case
will be larger than the first. Because of this the combination
is most successful when the stronger tree-based approach is
used as the second similarity measure. It is possible to use
the tree-based approach to reduce the case base and then the
CBR-DIFFERENCE-MEASURE function to select the single
nearest case, but this does not produce as good results for
our domain, with an error of around 4.3 (depending on the
number of trees). This is as expected, because our hybrid ap-
proach improves the results compared to only using the sec-
ond similarity measure. For a large number of trees the er-

 4

 4.2

 4.4

 4.6

 4.8

 5

1s 10s 1m 10m

Er
ro

r

Time

Hybrid

Random similarity

Least difference

Random trees

Figure 4: Measured error in the palliative care domain com-
pared to computational time required for our 4 algorithms.
(Lower error is better.)

ror from the N -RANDOM-TREES algorithm is significantly
lower than for LEAST-DIFFERENCE, and thus the starting
point for the hybrid combination is better.

Results
Figure 3 shows the measured error compared to the num-
ber of trees in the forest for the 4 different algorithms.
RANDOM-SIMILARITY and LEAST-DIFFERENCE do not
depend on the number of trees and are shown as horizon-
tal lines for their error level.

The error for N -RANDOM-TREES and N -HYBRID

rapidly decreases for N values up to around 100 trees, and
then starts flattening out, and more than 1000 trees only
gives a slight decrease in error. This is expected as addi-
tional trees provide less new information when a larger pro-
portion of possible attribute combinations have already been
examined, and in general it becomes increasingly difficult to
improve a result the lower the remaining error is.

The N -HYBRID algorithm consistently provides lower
error than the base algorithms N -RANDOM-TREES and
LEAST-DIFFERENCE, which suggests that our combined hy-
brid approach works successfully in our domain. For a
large number of trees the errors for the N -HYBRID and N -
RANDOM-TREES algorithms are relatively close in absolute
value, but achieving the same incremental improvement us-
ing only a larger N value would be much more computation-
ally expensive than using the hybrid approach, and might
possibly be unachievable at the highest end as the error con-
tinues to flatten out around 4.0.

Figure 4 also shows the measured error for the 4 dif-
ferent algorithms, but compared according to the time
(computational resources) required. (For legibility the
RANDOM-SIMILARITY and LEAST-DIFFERENCE algo-
rithms are shown as extended horizontal lines, while in re-
ality they consist of only the leftmost point since their exe-
cution time for a given set of inputs remains constant apart
from small random fluctuations in the computing environ-

ment.)
While the exact values are highly dependent on the type

of computing machine it’s measured on, we are interested in
the relative differences between algorithms which are mostly
determined by their computational complexity.

We see that the LEAST-DIFFERENCE algorithm is con-
siderably more computationally expensive than the effi-
cient N -RANDOM-TREES implementation for low values of
N . Running the LEAST-DIFFERENCE algorithm is roughly
comparable to 1000 random trees, and this overhead is re-
flected for the N -HYBRID algorithm as well.

The increase in computational cost to generate hundreds
of trees for N -HYBRID is relatively modest compared to the
cost of including the LEAST-DIFFERENCE computations at
all, which means that the N -HYBRID algorithm rapidly be-
comes the best-performing of the 4 algorithms once enough
computational resources are allotted to run it at all.

Algorithm Time Error
RANDOM-SIMILARITY 0.3 seconds 4.98

LEAST-DIFFERENCE 45 seconds 4.55

1-RANDOM-TREE 0.5 seconds 4.87
10-RANDOM-TREES 1 second 4.46
100-RANDOM-TREES 4 seconds 4.10
1000-RANDOM-TREES 30 seconds 4.04
10000-RANDOM-TREES 300 seconds 4.03
100000-RANDOM-TREES 3030 seconds 4.01

1-HYBRID 45 seconds 4.50
10-HYBRID 45 seconds 4.33
100-HYBRID 50 seconds 4.08
1000-HYBRID 70 seconds 4.02
10000-HYBRID 320 seconds 4.01
100000-HYBRID 2730 seconds 3.99

Table 1: Numerical results for our 4 algorithms in the pallia-
tive care domain.

Table 1 shows a more detailed numerical display of an
illustrative subset of the results for power-of-10 values of
N . 100-RANDOM-TREES is a very quick algorithm that
produces a relatively low error compared to the other al-
gorithms, while the best results are achieved by the N -
HYBRID algorithm for high values of N . It is also interest-
ing to note that 100000-HYBRID runs faster than 100000-
RANDOM-TREES, which is because in the HYBRID version
the somewhat expensive operation of comparing 100k trees
is only performed for half as many cases.

Conclusions
In this paper we have developed a new random decision tree
(RDT) algorithm that can be very efficiently implemented
in a CBR setting. We have combined this RDT algorithm
with a simple traditional similarity measure based on do-
main knowledge to create a hybrid similarity assessment al-
gorithm. The hybrid combination outperformed the base al-
gorithms it was based on by returning predictions with con-
sistently lower error on average for cases from a palliative
care domain.

Acknowledgments
We wish to thank Cinzia Brunelli for providing the data
set, and Anne Kari Knudsen for interpreting the data and
analysing the relevance of the features from a clinical per-
spective.

References
Bian, S., and Wang, W. 2007. On diversity and accuracy of
homogeneous and heterogeneous ensembles. Int. J. Hybrid
Intell. Syst. 4:103–128.

Breiman, L. 2001. Random forests. Machine Learning
45:5–32. 10.1023/A:1010933404324.

Fan, W.; Wang, H.; Yu, P. S.; and Ma, S. 2003. Is random
model better? on its accuracy and efficiency. In Proceedings
of the Third IEEE International Conference on Data Mining,
ICDM ’03, 51–. Washington, DC, USA: IEEE Computer
Society.

Ferguson, A., and Bridge, D. 2000. Generalised weight-
ing: A generic combining form for similarity metrics. In
Procs. of Eleventh Irish Conference on Artificial Intelligence
& Cognitive Science, J.Griffith and C.O’Riordan, 169–179.

Gashler, M.; Giraud-Carrier, C.; and Martinez, T. 2008. De-
cision Tree Ensemble: Small Heterogeneous Is Better Than
Large Homogeneous. In 2008 Seventh International Con-
ference on Machine Learning and Applications, 900–905.
IEEE.

Houeland, T., and Aamodt, A. 2010. The utility problem
for lazy learners - towards a non-eager approach. In Bichin-
daritz, I., and Montani, S., eds., Case-Based Reasoning. Re-
search and Development, volume 6176 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg. 141–155.
10.1007/978-3-642-14274-1.

Liu, F. T.; Ting, K. M.; and Fan, W. 2005. Maximizing
tree diversity by building complete-random decision trees.
In Ho, T. B.; Cheung, D.; and Liu, H., eds., Advances in
Knowledge Discovery and Data Mining, volume 3518 of
Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg. 605–610. 10.1007/11430919.

Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artif. Intell. 42(2-3):363–
391.

Patterson, D. W.; Rooney, N.; and Galushka, M. 2003. Ef-
ficient retrieval for case-based reasoning. In Russell, I., and
Haller, S. M., eds., FLAIRS Conference, 144–149. AAAI
Press.

Richter, M. M. 1995. The knowledge contained in similarity
measures. Invited Talk at ICCBR-95.

Smyth, B., and Cunningham, P. 1996. The utility problem
analysed - a case-based reasoning perspective. In Proceed-
ings of the Third European Workshop on Case-Based Rea-
soning, 392–399. Springer Verlag.

Wess, S.; Althoff, K.-D.; and Derwand, G. 1994. Using
k-d trees to improve the retrieval step in case-based reason-
ing. In Selected papers from the First European Workshop
on Topics in Case-Based Reasoning, EWCBR ’93, 167–181.
London, UK: Springer-Verlag.

92

Paper D

An Efficient Hybrid Classifi-
cation Algorithm - an Exam-
ple from Palliative Care

Authors: Tor Gunnar Høst Houeland and Agnar Aamodt

Published in: Corchado E., Kurzyński M., Woźniak M. (eds) Hybrid Artificial
Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science, vol 6679, pp.
197–204.. Springer, Berlin, Heidelberg (2011)

https://doi.org/10.1007/978-3-642-21222-2_24

My contributions: I developed the RDT algorithm, research, and experiments
presented in the paper, wrote the initial draft, and incorporated comments and
suggested changes into the text.

93

An Efficient Hybrid Classification Algorithm
- an Example from Palliative Care

Tor Gunnar Houeland, Agnar Aamodt

Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
{houeland,agnar}@idi.ntnu.no

Abstract. In this paper we present an efficient hybrid classification al-
gorithm based on combining case-based reasoning and random decision
trees, which is based on a general approach for combining lazy and eager
learning methods. We use this hybrid classification algorithm to predict
the pain classification for palliative care patients, and compare the re-
sulting classification accuracy to other similar algorithms. The hybrid
algorithm consistently produces a lower average error than the base al-
gorithms it combines, but at a higher computational cost.

Keywords: hybrid reasoning systems, classifier combination, case-based
reasoning, random decision trees

1 Introduction

Case-based reasoning (CBR), including instance-based methods, represents a
unique approach to learning and problem solving compared to generalization-
based methods. It is therefore often a choice of one method in a hybrid system,
complementary to generalization-based and inductive methods. Examples in-
clude using an ensemble of different inductive methods to perform adaptation in
CBR [12], and a neural network approach for adaptation, revision, and retain-
ment of cases [5]. As a lazy learning method that postpones the generalization
step until problem solving time [1], CBR has the advantage of including con-
textual information that an eager approach would not have access to, thereby
adapting the reasoning to the particular characteristics of the problem to solve.
Eager methods, on the other hand, have the advantage that parts of the problem
solving behaviour can be precomputed during training, which enables reduced
storage space and faster query processing.

A path of our research is to explore the combination of model-based reason-
ing, starting from a predefined model that make some top-down commitments,
with case-based reasoning that make very few high level commitments but rather
grows its knowledge base (case base) in a bottom-up fashion. An example is the
combination of Bayesian Networks with case-based reasoning [4]. In this paper
we examine a hybrid approach that uses a modified version of an eager method,

Random Decision Trees (RDT), that can be partially precomputed and partially
adapted to the particular problem query.

As of today, there is no consensus about the set of classes that should be used
for pain classification in palliative care [9]. Our domain is open and changing,
which is why we study methods of machine learning and decision support that
are able to produce useful results without making very strong commitments
about the domain.

In an earlier study we examined the problem of determining case similarity
in our palliative care domain, and created a hybrid RDT approach to locate the
most similar case in the case base [7]. In the work presented here we extend our
approach by developing algorithms for classifying cases. We do this by predicting
the average pain and worst pain values for the third week after the first consul-
tation, based on the information collected for the first two weeks. These values
are important because the objective is to minimize the patient’s pain, and the
doctor’s approach for relieving the patient’s pain is applied in full during the
second week. In the third and following weeks, the patient is mainly observed
and pain medication is modified according to needs.

In the next section we review some earlier relevant research, which is followed
in section 3 by a description of our RDT-based experiment and the algorithms
used in the experiment. In section 4 we compare the algorithms and their pa-
rameters and discuss empirical results from running the algorithms on a case
base of palliative care patients. Concluding remarks end the paper.

2 Related Research

Studies of ensembles of random decision trees have been extensive. Among the
most well-known is the Random Forest (RF) classifier [3] which grows a number
of trees based on bootstrap samples of the training data. For each node of a
tree, m variables are randomly chosen and the best split based on these m
variables is calculated based on the bootstrap sample. Each decision tree results
in a classification and is said to cast a vote for that classification. The ensemble
classifier returns the class that receives the most votes. RF can also compute
proximities between pairs of cases that can be used for clustering and data
visualization, and hence as similarity measures for case-based reasoning.

In a thorough study of ensemble method types it was found that the perfor-
mance of an ensemble learning approach varies substantially across applications.
Bian et. al. [2] studied homogeneous and heterogeneous ensembles and found
connections between diversity and performance, and an increased diversity for
heterogeneous ensembles.

A contribution to the analysis of the laziness vs. eagerness distinction, which
corresponds with the distinction between global and local approximations to the
target function, was made by Hendrickx and den Bosch [6]. They studied several
hybrid methods as well as their single components. The analysis showed that the
k-NN method outperformed the eager methods, while the best hybrid methods
outperformed any single methods on combined generalization performance and

Fig. 1. Using a similarity-based local case subset as training data. A set of neighbors
of the marked problem query to solve are shown as the cases that lie within the circle.
That set is used to train an independent learning algorithm.

statistical error bias. A combined approach for optimizing the combined learning
and classification time of lazy and eager learners was developed by Mohebpour
et.al. [11], a problem also addressed by Veloso and Meira [14].

A particular problem relates to the utility of learned knowledge. The ”utility
problem” occurs when additional knowledge learned decreases a reasoning sys-
tem’s performance instead of increasing it [10, 13]. Theoretically this will always
occur in a CBR system when the system’s case base increases without bound.
The utility problem is not necessarily observed in practice for real-world CBR
systems with moderately-sized case bases, however.

Based on one of our own studies [8], we suggest that the usefulness of an
optimization should be measured by the effect it has on the reasoning system’s
overall utility. We measured an example system’s total solution time to show that
case base size reduction methods can be counterproductive because the methods
were more computationally demanding than simply reasoning using the larger
unreduced case base.

3 Random Decision Tree Classification Experiment

The hybrid random decision tree (RDT) algorithm presented here is an approach
to combining machine learning methods with case-based reasoning. We retrieve
the most similar half of the available cases using a domain-specific relevance
measure (a general illustration of this approach is shown in figure 1). We then
run our RDT algorithm as a computationally efficient machine learner using
this subset of cases as training data. This approach combines the lazy and lo-
cally specific characteristics of a CBR retrieval with the more eager and global
characteristics often seen in traditional machine learning algorithms.

In the presented research we expand the use of our RDT algorithm from
being a pure similarity measure to also predicting the classification of unseen

cases. As part of its internal computations, each decision tree in our algorithm
is partitioning the cases in the case base between its leaf nodes. This is con-
ceptually similar to how indexing trees used for efficient retrieval in CBR are
constructed. We exploit this insight to create a classification algorithm where
each tree classifies a new problem query based on the previous cases that lead
to the same leaf node as the new problem query.

If each tree classifies cases as the arithmetic mean of the classification of
previous cases in the same leaf node, and the average of each tree is used as
the combined classification, then it is not necessary to enumerate the specific
subsets of cases present in each leaf node. It is sufficient to know how many
times each case shares a leaf node with the problem query, and then the combined
classification can be determined by taking the weighted average, where each case
is assigned a weight equal to the number of times it shares a leaf node with the
problem query.

The number of times a case shares a leaf node with the problem query is
precisely the proximity of the case, for which we have previously developed an
efficient computational method while exploring the use of RDTs to determine
similarity [7].

Using this proximity-weighted averaging approach, we have implemented a
purely RDT-based classifier and a hybrid RDT+CBR classifier. We explore their
characteristics related to the palliative pain classification domain. For compari-
son purposes we also test a k-NN classifier corresponding to the CBR part of the
hybrid, and a simple and very fast algorithm based only on averaging. We com-
pare the results obtained from these algorithms according to their computational
complexity.

Our data set consists of 1486 cases with numerical features based on patients
in the palliative care domain. The problem description we use for input queries to
be solved consists of 55 numerical features based on measurements and classifi-
cations obtained during the first two weeks after the first consultation. Examples
of these features include the patient’s age, the reported average pain for week 1
on a scale from 0-10, the total opioid dose given as pain relief for week 2 as a
floating point number, and similar features for other aspects such as insomnia,
cognitive functioning and use of antidepressants. As the solution to predict we
use 2 classifications related to the patient’s pain for the third week: the reported
average pain and worst pain on scales from 0-10.

3.1 Algorithms

Computed-Average computes the mean average pain and worst pain values
based on the cases encountered so far, and uses these computed means as the
predicted classifications for the new problem query. It is a simple and fast al-
gorithm which only learns from the problem solutions. It performs this limited
task well, and is used as a baseline comparison for the other algorithms which
attempt to also learn domain knowledge from the more complicated problem
descriptions.

CBR-k-NN selects the average of the k most similar previously encountered
cases. Similarity is measured using a simple CBR-Difference-Measure func-
tion that was provided as a rough relevance estimate. This estimate is based on
differences in 8 values in the data set that correspond to the variables a domain
expert considers most important. For k = 1 this is the same as retrieving and
copying the solution from the most similar case, while k ≥ 2 performs averaging
as a simple and knowledge-lean multi-case adaptation step during reuse.

N-RandomTrees-Classifier is based on our presented approach for clas-
sification by efficiently evaluating random decision trees on case subsets. N trees
are grown and the average pain and worst pain values are predicted as the av-
erage of all cases in the case base weighted by their computed proximity to the
problem query.

N-Hybrid-Classifier is our hybrid combination of the CBR relevance mea-
sure and using our RDT algorithm for classification. For every input problem
query, the CBR-Difference-Measure function is used to narrow the case
base down to the most similar half. Then N trees are used to compute the av-
erage and worst pain as in the N-RandomTrees-Classifier algorithm, but
based only on the cases from this most relevant half of the case base.

4 Results and Discussion

To achieve a fair comparison we generate 10 versions of the input where the
same patient cases are used, but in 10 different randomly shuffled orders. We
evaluate the algorithms by their average result from each of these modified case
bases. We use this approach because the results of a single run-through of the
case base can vary, due to intrinsic randomness in the RDT-based algorithms
and differences caused by the order in which the cases are presented. For each
algorithm we measure the root mean square error (RMSE) for solving each of
the 10 permuted case bases, and report the average RMSE value.

Figure 2 shows the measured average root mean square error for the different
algorithms, compared according to the time (computational resources) required.
The result for the Computed-Average algorithm is shown as a single point,
as there is no varying parameter and the execution time for a given set of in-
puts remains constant apart from small random fluctuations in the computing
environment. The exact time required depends on the type of computing device
that is used to run the algorithms, but we focus on the relative differences be-
tween these algorithms which is primarily determined by their computational
complexity.

The results for CBR-k-NN are not as sensitive to the exact value of k as an
initial reading of the graph might suggest, because the value of k has a relatively
small effect on the time required to run the algorithm. In fact the visible line for
CBR-k-NN in the graph spans from around k = 5 to k = 1000.

Additional details are shown in table 1, with numerical values for a subset
of the results. The results shown in the table are marked as points in figure 2.

Fig. 2. Experimental results for the different algorithms and parameters, compared to
the computational resources required. (Lower error and faster time is better.)

The underlying CBR-Difference-Measure function is not in itself par-
ticularly potent as a direct similarity measure. CBR-1-NN produces an error of
4.14. This is worse than a trivial classifier that always predicts 5 as the solution,
which produces an error of 3.62 using the same experimental setup. However, the
variables identified by the domain expert are indeed relevant, as a completely
random similarity measure that retrieves a case at random produces an error of
4.46.

This indicates that the similarity measure is helpful for locating the most
relevant cases, but that predicting the pain values based on only a single sim-
ilar patient is unlikely to work well in this domain. A relatively large k value
of around 75 produces the best result for the CBR-k-NN algorithm in this
experiment.

For our RDT approaches a higher number of trees N produces better results.
Unlike how k affects CBR-k-NN, there is no particular sweet spot for N in either
the RDT trees or the hybrid approach above which the results start deteriorating.
However, the improvements flatten out to become negligible compared to the
increase in computational resources required when using more than around 1000
trees.

N-Hybrid-Classifier has the lowest overall error but a comparatively
high computation costal, while Computed-Average and N-Random-Trees-

Classifier are good choices to produce results very quickly.

This illustrates an important trade-off between speed and accuracy when
choosing a classifier. In this experiment, our approach to combining lazy and
eager classifiers to make a hybrid classifier produced better predictions, but
at an increased computational cost. Whether the increased accuracy is worth
the additional complexity and increased resource cost depends on the exact
application and usage of the reasoning system. Given a time limit for a particular
application, the algorithm that produces the best results can e.g. be determined
as the lowest line at that point in a graph such as the one shown in figure 2.

Table 1. Numerical results for our algorithms in the palliative care domain, showing
the computation time required and the average root mean square error.

Algorithm Time Error

Computed-Average 1.4 seconds 3.14

CBR-1-NN 26 seconds 4.14
CBR-10-NN 30 seconds 3.09
CBR-75-NN 31 seconds 3.01
CBR-500-NN 32 seconds 3.08

1-Random-Trees-Classifier 1.5 seconds 3.13
10-Random-Trees-Classifier 1.6 seconds 3.10
100-Random-Trees-Classifier 2.9 seconds 3.09
1000-Random-Trees-Classifier 17 seconds 3.08
10000-Random-Trees-Classifier 150 seconds 3.08

1-Hybrid-Classifier 28 seconds 3.03
10-Hybrid-Classifier 30 seconds 3.01
100-Hybrid-Classifier 31 seconds 3.00
1000-Hybrid-Classifier 46 seconds 2.99
10000-Hybrid-Classifier 180 seconds 2.99

5 Conclusions and further research

In this paper we have presented an approach for classifying unseen cases in the
palliative care domain by extending our efficiently computable random decision
tree (RDT) algorithm. We have developed methods for predicting the average
pain and worst pain values for palliative care patients. We used a case-based
k-NN method using a domain-specific relevance measure, a knowledge-lean im-
plementation of our RDT method and a hybrid combination of the relevance
measure and the RDT approach. The base RDT approach produced results very
quickly, while the hybrid approach produced better results than either of the base
algorithms at a comparable computational cost to running the k-NN method.

In the palliative care domain, where patients receive treatment over several
months and a better result can potentially result in reduced suffering, using the
best possible algorithm is usually worthwhile. However, in this domain, increas-
ing the parameter for the number of trees in the hybrid algorithm above around
1000 increases the computational cost with negligible improvements in accuracy.

In our ongoing and future work, we are experimenting with using meta-level
reasoning as part of the problem solving process. Our goal is to automatically
determine which algorithm produces the best results for a given data set, and
to use that algorithm for solving future problem queries.

Acknowledgments This research is partly conducted within the project TL-
CPC (Transactional Research in Lung Cancer and Palliative Care), a nationally
funded project in cooperation with the Medical Faculty of our university and
the St. Olav Hospital in Trondheim.

We wish to thank Cinzia Brunelli for providing the data set, Anne Kari
Knudsen for interpreting and analysing the data from a clinical perspective, and
Tore Bruland for his analysis of the data from a data structure and machine
learning perspective.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (March 1994),
http://portal.acm.org/citation.cfm?id=196108.196115

2. Bian, S., Wang, W.: On diversity and accuracy of homogeneous and het-
erogeneous ensembles. Int. J. Hybrid Intell. Syst. 4, 103–128 (April 2007),
http://portal.acm.org/citation.cfm?id=1367006.1367010

3. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001),
http://dx.doi.org/10.1023/A:1010933404324

4. Bruland, T., Aamodt, A., Langseth, H.: Architectures integrating case-based rea-
soning and bayesian networks for clinical decision support. In: Shi, Z., Vadera, S.,
Aamodt, A., Leake, D.B. (eds.) Intelligent Information Processing. IFIP, vol. 340,
pp. 82–91. Springer (2010)

5. Corchado, J.M., Lees, B., Aiken, J.: Hybrid instance-based system for predict-
ing ocean temperatures. International Journal of Computational Intelligence and
Applications pp. 35–52 (2001)

6. Hendrickx, I., van den Bosch, A.: Hybrid algorithms with instance-based classifi-
cation. In: Gama, J., Camacho, R., Brazdil, P., Jorge, A., Torgo, L. (eds.) ECML.
LNCS, vol. 3720, pp. 158–169. Springer (2005)

7. Houeland, T.G.: An efficient random decision tree algorithm for case-based rea-
soning systems. In: FLAIRS Conference. AAAI Press (2011), to appear

8. Houeland, T.G., Aamodt, A.: The utility problem for lazy learners - towards a
non-eager approach. In: Bichindaritz, I., Montani, S. (eds.) Case-Based Reason-
ing. Research and Development, LNCS, vol. 6176, pp. 141–155. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-14274-1, 10.1007/978-3-642-14274-1

9. Knudsen, A., Aass, N., Fainsinger, R., Caraceni, A., Klepstad, P., Jordhy,
M., Hjermstad, M., Kaasa, S.: Classification of pain in cancer patients
a systematic literature review. Palliative Medicine 23(4), 295–308 (2009),
http://pmj.sagepub.com/content/23/4/295.abstract

10. Minton, S.: Quantitative results concerning the utility of explanation-based learn-
ing. Artif. Intell. 42(2-3), 363–391 (1990)

11. Mohebpour, M.R., Adznan B. J., Saripan, M.I.: Grid Base Classifier in Compar-
ison to Nonparametric Methods in Multiclass Classification. Pertanika J. Sci. &
Technol. 18(1), 139–154 (2010)

12. Policastro, C., Delbem, A., Mattoso, L., Minatti, E., Ferreira, E., Borato, C., Zanus,
M.: A Hybrid Case Based Reasoning Approach for Wine Classification. ISDA pp.
395–400 (2007)

13. Smyth, B., Cunningham, P.: The utility problem analysed - a case-based reason-
ing perspective. In: Proceedings of the Third European Workshop on Case-Based
Reasoning. pp. 392–399. Springer Verlag (1996)

14. Veloso, A., Meira, Jr., W.: Eager, lazy and hybrid algorithms for multi-criteria as-
sociative classification. In: Proceedings of the Data Mining Algorithms Workshop.
Uberlandia, MG. (2005)

102

Paper E

Extended abstract: Combin-
ing CBR and BN using metar-
easoning

Authors: Tor Gunnar Høst Houeland, Tore Bruland, Agnar Aamodt, and Helge
Langseth

Published in: A. Kofod-Petersen et al. (Eds.) Eleventh Scandinavian Confer-
ence on Artificial Intelligence, pp. 189–190. IOS Press (2011)

https://doi.org/10.3233/978-1-60750-754-3-189

Full paper, with title “A hybrid metareasoning architecture combining case-based
reasoning and Bayesian networks” (unpublished)

My contributions: I proposed the overall paper with one section contributed from
each co-author, wrote the abstract, introduction, metareasoning, and discussion
sections, and edited the paper down to an extended abstract for publication.

103

Extended abstract: Combining CBR and

BN using metareasoning

Tor Gunnar HOUELAND, Tore BRULAND, Agnar AAMODT and Helge LANGSETH

Norwegian University of Science and Technology, Norway

Abstract. In complex domains, it is often necessary to determine which reasoning

method would be the most appropriate for each task, and a combination of different

methods has often shown the best results. We examine how two complementary

reasoning methods, case-based reasoning and Bayesian networks, can be combined

using metareasoning to form a more robust and better-performing system.

Keywords. metareasoning, case-based reasoning, bayesian networks

1. Introduction

For real life applications, there are two different categories of uncertainty that are usually

both present to some degree: aleatoric uncertainty and epistemic uncertainty. Aleatoric

uncertainty refers to the general stochastic nature of the domain, where events have a

certain probability of happening given the right conditions. On the other hand, epistemic

uncertainty is a general lack of knowledge. This refers to our incomplete understanding

of the domain, e.g. inaccurate beliefs about the causal relationships and models that

do not include all significant effects. To address these different types of uncertainty,

we study the combination of case-based reasoning (CBR) for epistemic uncertainty and

Bayesian networks (BN) for aleatoric uncertainty, based on their respective strengths

in this area. We present an automatic reasoning architecture that uses metareasoning to

determine whether CBR or BN should be used to solve a new problem query, based on

their past performance.

In CBR [1], a computer model is built up of a set of concrete past situations, called

cases. Reasoning methods of similarity assessment, pattern recognition, and analogical

mapping, rather than theory-driven methods, operate over these cases. An initial set of

cases is often easier for a human domain expert to provide than a generalized reasoning

model, and can often be transferred from written documentation. This makes CBR suit-

able as a complementary method to generalization-based models: CBR uses localized

models to model a domain, and in that sense is able to fill in holes in a knowledge base

in a straightforward manner, which can address problems of epistemic uncertainty.

A BN [2] models a domain using probability theory. One of the main arguments for

using BNs over other model-based reasoners is the framework’s sound inference engine.

The belief in any query can be accurately calculated for the model given any combi-

nation of available evidence, such as the probability of an object being from a specific

class given the attributes describing that object. BNs encode assumptions regarding con-

ditional independencies in the domain, and use probability distributions as its represen-

tation. BNs are well-suited to model aleatoric uncertainty, while epistemic uncertainty is

not as easily captured.

2. Hybrid CBR-BN combination

In previous research we have identified four basic sequential combinations for integrating

BN and CBR reasoning processes [3]. These combinations have different strengths and

it is not clear in advance which combination is preferable for a given problem.

To address this issue we have created a new adaptive architecture which combines

CBR and BN automatically. This is achieved by performing metareasoning about the

methods at runtime based on collected performance data. For a new problem query, our

metareasoner chooses either to use CBR or BN based on which algorithm produced

the best answers on the most recent problems the system has solved. The underlying

assumption in this approach is that a reasoning method, which performs well on a certain

task, will continue to do so in the future, and that changes in classification accuracy occur

gradually while learning.

We focus on domains with stochastic elements where human experts rely on their

experience to solve new problems. For the CBR method a human expert provides a set

of illustrative cases, which attempts to cover the range of problem categories the expert

usually considers in their work.

Using CBR with the expert knowledge can immediately produce fairly good results,

as a simplified model of the expert’s methodology and understanding of the domain.

However, future learning for the CBR system based on expert cases is limited by the

availability of the expert, and consists of only adding new exceptional cases to address

identified shortcomings in the model. On the other hand, BNs’ statistical learning are

founded on learning the probabilistic relations in the domain from training data. Because

of the way our combination is structured, BNs are able to take full advantage of the

new problems the system encounters as training data, and improve from an initially poor

performance to bypass the performance achieved using CBR.

A benefit of using an automatic metareasoning approach to combine reasoning meth-

ods is that the computations can be dynamically adapted. For our scenario, this means

that we empirically detect when there is enough representative training data for the BN

to generally produce better results than the expert-modeled CBR cases, and can choose

the currently best-perfoming method to solve the next problem query.

Acknowledgements The reported research is partially funded by the TLCPC project,

Norwegian Research Foundation under contract no. NFR-183362.

References

[1] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and

system approaches,” AI Communications, vol. 7, pp. 39–59, March 1994.

[2] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,

CA.: Morgan Kaufmann Publishers, 1988.

[3] T. Bruland, A. Aamodt, and H. Langseth, “Architectures Integrating Case-Based Reasoning and Bayesian

Networks for Clinical Decision Support,” in Intelligent Information Processing V (Z. Shi, S. Vadera,

A. Aamodt, and D. Leake, eds.), pp. 82–91, Springer, 2010.

A hybrid metareasoning architecture
combining case-based reasoning and

Bayesian networks

Tor Gunnar HOUELAND a, Tore BRULAND b, Agnar AAMODT a and
Helge LANGSETH a

aDepartment of Computer and Information Science
bDepartment of Cancer Research and Molecular Medicine
Norwegian University of Science and Technology, Norway

Abstract. In complex domains, a single type of knowledge and reasoning method
is often not suf cient for a decision support system to address the variety of tasks
a user performs. It is often necessary to determine which reasoning method would
be the most appropriate for each task, and a combination of different methods has
often shown the best results. We examine the strengths and weaknesses of two com-
plementary reasoning methods, case-based reasoning and Bayesian networks, and
discuss how they can be combined to form a more robust and better-performing
hybrid. We present a metareasoning system for automatically selecting the most vi-
able reasoning method for a particular input query at runtime, for a sustained learn-
ing scenario where an expert provides initial domain knowledge through modeling
illustrative cases.
Keywords. metareasoning, hybrid reasoning systems, case-based reasoning,
bayesian networks

1. Introduction

Automated computer reasoning is a challenging eld. There are a multitude of different
reasoning methods available, with different strengths, assumptions and learning biases.
The accuracy of a method depends on the speci c domain and can be dif cult to pre-
dict in general, while a human expert can often determine whether a reasoning method
will be either particularly useful of inappropriate for a speci c problem. Recently, there
has been a renewed interest in reasoning about reasoning, i.e. metareasoning, within au-
tomated computer reasoning systems [1]. In metareasoning there are generally two im-
portant aspects: introspection and meta-level control. Introspection refers to a system’s
ability to gather information about its own (object-level) reasoning processes, e.g. com-
putational performance data, and records of the steps taken during reasoning. Meta-level
control aims to increase the quality of the combined reasoning system by deciding what
type of object-level reasoning to perform, based on the information collected from intro-
spection. Meta-level control can for example be used to balance a system’s limited re-
sources between computations and external (ground-level) actions that affect the world,
and dynamically adapting the speci c computations and actions that are performed.

When using reasoning methods for real life applications, there are two different cat-
egories of uncertainty that are usually both present to some degree: aleatoric uncertainty
and epistemic uncertainty. Aleatoric uncertainty refers to the general stochastic nature
of the domain, and refers to events having a certain probability of happening given the
right conditions. This is in contrast to e.g. axiomatic logic where an valid implication
means that a conclusion always occurs given the premise. On the other hand, epistemic
uncertainty is a general lack of knowledge. This refers to our incomplete understanding
of the domain, e.g. inaccurate beliefs about the causal relationships and models that do
not include all signi cant effects. To address these different types of uncertainty, we are
examining hybrid reasoning systems that combine reasoningmethods that handle each of
the uncertainty categories well. In the research presented in this paper the two methods
we study are Bayesian networks (BN) for aleatoric uncertainty and case-based reasoning
(CBR) for epistemic uncertainty.

We present a reasoning architecture that uses metareasoning to automatically detect
at runtime whether CBR or BN should be used to solve a new problem query, given the
system’s current state of uncertainty. The approach is based on the identi ed character-
istics of CBR and BN regarding uncertainty, and the decision for each problem query is
based on the empirical results of using CBR and BN to solve other recently seen input
queries. This approach applies to domains with both aleatoric and epistemic uncertainty,
where there is a human expert who can provide a set of illustrative cases to initially
model the domain, and the system receives feedback about the actual outcomes of using
its predicted solutions to the problems it solves.

In the next two sections we summarize the essential properties of CBR and BN, with
an emphasis on their complementary strengths and weaknesses. Section 4 discusses how
hybrid combinations can be made from CBR and BN methods, and section 5 examines
how a meta-reasoner can be used to create such hybrid reasoning systems automatically.
A discussion and concluding remarks end the paper.

2. Case-based reasoning characteristics

In case-based reasoning (CBR) [2,3] a computer model is built up of a set of concrete
past situations, called cases, stored in a knowledge base referred to as a case base. CBR is
a method for problem solving that also incorporates learning from problems just solved.
The core knowledge component is the case, which in its basic form has two parts, a
problem description part and a problem solution part. The notion of a "problem" should
here be viewed in a general sense, i.e. as a state for which some inference or action is
called for that leads to a "solution", i.e. some result. Hence, a problemmay be interpreting
a situation, posing a question, assessing a feature value, etc., as well as solving a larger
diagnostic, planning, or scheduling problem. The problem description part constitutes
the set of input features to the reasoning process, while the problem solution part is the
system’s suggested solution to the problem. A third part is often added: outcome, i.e. the
result after having applied the solution to the problem. In its simplest form a single case
is represented as a list of attribute-value pairs, but more complex representations are also
frequently adopted, such as hierarchical description structures.

Reasoning methods of similarity assessment, pattern recognition, and analogical
mapping, rather than theory-driven methods, operate over this case base. A four-step

cycle describes the CBR problem solving and learning process (Figure 1): In the rst
step, Retrieve, an input case is matched against the cases in the case base, and the best
matching case is retrieved. In the next step, Reuse, the solution part of the best match-
ing case is used to construct a solution to the input case. The two nal steps enable the
system to learn from this problem solving session and update its case base accordingly.
The proposed solution is rst, in the Revise step, evaluated in order to assess its quality.
This may be done by a human expert, by applying the solution to the problem, or by
some additional computer model outside the CBR system - such as a simulation system.
After evaluation the solution may be adjusted, and the case then enters the Retain step,
in which a new case may be constructed, the new case may be merged with an existing
case, or only the index structure may be updated.

The above description has focused solely on the case knowledge, i.e. the cases in the
case base. As Figure 1 shows, a CBR system’s knowledge base may also contain general
domain knowledge, for example a set of rules, a taxonomy, an ontology, or another multi-
relational domain model. Although all subareas of CBR have been subjects of active re-
search, up to now the Retrieve step, and in particular similarity assessment, has been the
most focused [4]. It is important to note that case retrieval is a partial matching process,
in which the best partial match is targeted. The de nition of a best match is contained in
the similarity assessment procedure. In the simplest CBR method, also referred to as an
instance-based method, a case is represented by a at attribute-value list, and no general
domain knowledge is used. The degree of similarity between two cases is calculated by
summing up the number of identical attribute-value pairs, if we are dealing with sym-
bolic feature values, and by computing the numerical differences if the attributes have
numerical values. When general domain knowledge is used in the similarity assessment
method, a similarity metric can take different forms depending on how the knowledge is
used. An example expression is given in Equation 1:

sim(CIN , CRE) =

∑n
i=1

∑m
j=1 sim(fi, fj)× w(fj)∑m

j=1 w(fj)
(1)

Here each feature in a stored case is given a weight (w) that re ects its relevance for that
particular case. General domain knowledge is used to determine the degree of similarity
between any two features, independent of their position in the case or whether they are
super cially similar or not. In the above expression, CIN and CRE are the input and
retrieved cases, and n andm are the number of ndings in each of them, respectively. fi
is the ith nding in CIN , fj the jth nding in CRE , andw(fj) the weight of that nding.

It should be noted that case-based reasoning has been strongly motivated by cogni-
tive science research [3] and the similar abilities of the human mind [5]. For example, in
their daily practice clinicians make use of personal speci c experiences gained through
daily work [6]. Past patient cases provide a level of speci city that focuses on single
patients rather than generalized principles, and are easier to describe than generalized
principles and dependencies. When modeling decision knowledge in a computer system,
an initial case base is therefore often easier to come up with than a generalized model,
and can often be transferred from written documentation such as patient journals.

An important property of the CBR method is its "lazy" approach to modeling and
learning. Lazy in this sense means that CBR does not eagerly build generalizations of
its experiences in the learning phase, but store them as speci c instances, and wait un-

Figure 1. The CBR cycle.

X3 X4

X5

X2

X1

Figure 2. An example BN over the nodes
{X1, . . . ,X5}. Only the qualitative part of the
BN is shown.

til the problem solving phase to determine in what way they should be used. This also
makes CBR suitable as a complementary method to generalization-based models: CBR
uses localized models to model a domain, and in that sense is able to ll in holes in a
knowledge base in a straightforward manner, i.e. just by adding another case. Hence,
epistemic uncertainty can easily be captured by a CBR model, whereas aleatoric uncer-
tainty, for which a known probability distribution over a set of states is assumed, favors
a generalized knowledge model, such as a BN model.

3. Bayesian networks characteristics

A Bayesian Network (BN), [7,8], is a compact representation of a multivariate statistical
distribution function. A BN encodes the probability density function governing a set of
random variables {X1, . . . , Xn} by specifying a set of conditional independence state-
ments together with a set of conditional probability functions. More speci cally, a BN
consists of a qualitative part, a directed acyclic graphwhere the nodes mirror the random
variablesXi, and a quantitative part, the set of conditional probability functions. An ex-
ample of a BN over the variables {X1, . . . , X5} is shown in Figure 2, where only the
qualitative part is given. We call the nodes with outgoing edges pointing into a speci c
node the parents of that node, and say that Xj is a descendant of Xi if and only if there
exists a directed path fromXi toXj in the graph. In Figure 2X1 andX2 are the parents
of X3, written pa (X3) = {X1, X2} for short. Furthermore, pa (X4) = {X3} and since
there are no directed path from X4 to any of the other nodes, the descendants of X4 are
given by the empty set and, accordingly, its non-descendants are {X1, X2, X3, X5}.

The edges of the graph represents the assertion that a variable is conditionally inde-
pendent of its non-descendants in the graph given its parents in the same graph. Other
conditional independence statements can be read off the graph by using the rules of d-
separation [7]. The graph in Figure 2 does for instance assert that for all distributions
compatible with it, we have thatX4 is conditionally independent of {X1, X2, X5} when
conditioned on {X3}.

When it comes to the quantitative part, each variable is described by the conditional
probability function of that variable given the parents in the graph, i.e., the collection
of conditional probability functions {f(xi|pa (xi))}ni=1 is required. The underlying as-
sumptions of conditional independence encoded in the graph allow us to calculate the
joint probability function as

f(x1, . . . , xn) =

n∏

i=1

f(xi|pa (xi)). (2)

A BN is a model of general domain knowledge. One of the main arguments for using
BNs over other model-based reasoners is the framework’s sound inference engine. One
can calculate the belief in any query given any evidence (e.g. the probability of an object
being from a speci c class given the attributes describing that object). Mathematically,
we say that we can calculate arbitrary marginal distributions, f(xi, xj , xk) as well as ar-
bitrary conditional distributions, f(xi, xj |xk, x�). The inference engine utilises the con-
ditional independence statements asserted by the model rather ef ciently, which makes
BNs well suited for modelling complex systems. Models over thousands of variables are
not uncommon.

The qualitative part of the BN (the graph) has an intuitive interpretation as a model
of causal in uence. Although this interpretation is not necessarily entirely correct, it is
helpful when the BN structure is to be elicited from experts. Furthermore, it can also
be defended if some additional assumptions are made [9]. These assumptions are often
acceptable in real-life situations, in particular if cause-effect relations are the most im-
portant pieces of knowledge to encode. In such cases, the building of a BN structure is a
viable (although sometimes rather time-consuming) task to perform by domain experts.

To elicit the quantitative part from experts, one must acquire all conditional distribu-
tions ({f(xi|pa (xi))}ni=1 in Equation 2). Once again the causal interpretation can come
in as a handy tool, but the quanti cation of the probability distributions is commonly
regarded as the most challenging phase of the BN modelling process. Empiric studies
(e.g., [10]) have shown that the results of a query are rather insensitive to small variations
in the de nition of the conditional distributions, but rather sensitive to variations in the
model structure.

As a modelling framework thoroughly grounded in probability theory, there are ef-
cient methods for learning BNs from data. Methods for batch learning of the quantita-
tive part of the BN from data date back to the work of [11], see also [12]. Methods for
batch learning the qualitative part from data was pioneered by [13], see also [14,15] .
Incremental techniques have also been explored, see e.g. [16].

The BN theory mentioned so far assumes that all the variables in the domain are cat-
egorical. De ning extensions of the BN framework to also support models that contain
both discrete and continuous variables is currently a lively research area, but not yet fully
matured. The common approach is to translate continuous variables to discrete interval-
variables, then consider all discrete variables (including categorical, ordinal, and interval
variables) as if they were categorical. This process inevitably leads to a loss of precision.

Another property of the BN modelling framework worth mentioning, is that as it
uses probability distributions to model a domain, it is viable to model aleatoric uncer-
tainty. Epistemic uncertainty cannot easily be captured naturally by a BN model, and
if a decision maker is faced with this type of uncertainty, one may consider alternative
modelling frameworks, such as CBR.

Figure 3. BN-CBR-1 Architecture Figure 4. BN-CBR-2 Architecture

Figure 5. CBR-BN-1 Architecture Figure 6. CBR-BN-2 Architecture

4. Hybrid CBR-BN combinations

Before we build a hybrid with BN and CBR, we must determine how the systems should
be combined.We split the reasoning about the problem data according to their character-
istics. For example, BN is suitable for global models with uncertainty. CBR on the other
hand is suitable for local models with a lot of details and a good similarity function, and
for easily representing situations to avoid as exceptions.

In a recent study we identi ed four basic sequential combinations for integrating BN
and CBR reasoning processes [17]. These combinations are depicted in Figures 3 to 6,
and use the following variable types: input variables Ii that are taken from the problem
description, mediating variables Aj that represent nodes in the BN model, an interme-
diate variable D that is calculated from the rst reasoner and transferred to the second,
and the nal classi cation variable C that is computed by the second reasoner. There
are two fundamental BN-CBR sequences and two CBR-BN sequences. Figure 3 shows
the BN-CBR-1 sequence, where the BN component is used to identify and activates the
most relevant cases in the case base, and then the CBR component solves the problem
by using only the activated cases as its case base. This architecture was used by Gomes
[18] and early work in our research group [19].

Figure 4 shows the BN-CBR-2 sequence. The BN component calculates an interme-
diate variable D from the input variables, which contains additional useful information
for retrieving cases and is transferred to the CBR system. The CBR component uses the
problem’s input variables together with this additional variableD to nd a similar case to
solve the problem. A similar architecture was used by early work in our research group
[19].

The CBR-BN-1 sequence is shown in Figure 5, which follows the same principle as
BN-CBR-2 but adapted to transfer fromBN to CBR. The CBR component nds a similar
case from the input variables and transfers an intermediate variableD to the BN system.
The BN system calculates the class C from the given input variables and variableD.

CBR-BN-2 is the last sequence and it is shown in Figure 6. In this combination
the case base contains different BN models, and CBR is rst used to nd a similar case
which has a speci c BN model as its solution. This BN model is then loaded and used to

calculate the class C based on the input variables. This architecture was used by Pavón
et al. [20] and Louvieris et al. [21].

One or more of these basic sequences can also be put together into a larger hybrid
system. As an illustrative example, let us assume that the task is to recommend a suitable
place of study for a person, using CBR-BN-1 and BN-CBR-2 to create a CBR-BN-CBR
hybrid. CBR is rst used to detect exceptions, such as the student already being enrolled
elsewhere, or that the student has cheated and is not quali ed. If one of these exceptions
is found the reasoning stops and no new place of study is found. When there are no
exceptions, the next step is using a BN to calculate a general place of study. If the student
is good with numbers then a school of management is suggested, or if the student has
good grades in natural science then an engineering program from a college is suggested.
CBR is then used again to take the suggestion and nd a concrete program at a particular
higher education facility, perhaps with further constraints based on the student’s grades.
In this way the rst CBR system lters out persons, the BN system calculates a type of
school, and the second CBR system nds the most suitable school or university.

5. Automatic combination using metareasoning

A practical problem for creating hybrid systems is that there are many different archi-
tectures to choose from, and it is time-consuming to build a reasoning system to exam-
ine and evaluate even just one of the possible combinations. This is partially alleviated
by following sound software engineering concepts, and providing modular implementa-
tions with abstractions that encapsulate the executable code in components that can be
reused. The same BN implementation can be used both for a system that only uses a
BN to solve problems directly, and for a combination that rst uses CBR to retrieve a
problem-speci c BN to be used. In this way a new system can be speci ed easily, by
just changing which component sends its output to the other, or by changing a parameter
such as which similarity measure to use.

In our metareasoning architecture algorithms that are implemented as reusable com-
ponents in this way are used as building blocks for reasoning during run-time. They can
be viewed as a form of language for specifying reasoning systems at the meta-level. This
connection to (formal) languages is not accidental [22]. A metalanguage is a language
used to discuss a language, and such metalanguages have been formally explored in logic
and linguistics. The act of introspection or re ection generally corresponds to an up-
ward shift from one level to a meta-level, and for languages this means referring to a
word instead of using a word in written text. For a reasoning system it means referring
to a reasoning process through a form of possibly implicit naming or labeling, instead
of directly referring to the problems that are solved. In an earlier paper we introduced a
vocabulary to describe problems and reasoning methods for such a meta-level reasoning
system [23].

A popular direction for using metareasoning in CBR systems is to use traces of
object-level reasoner behavior as the meta-data [24]. These traces list the steps of the
process the object-level reasoner performs, and then a form of meta-level control is used
to detect and correct problems. In contrast to this error-correcting approach, we focus
on using computational performance data as the meta-data. Based on their complemna-
try strength related to the two categories of uncertainty, our metareasoning architecture

combines CBR and BN, by detecting at runtime which algorithm is producing the best
solutions. We focus on a class of domains containing both aleatoric and epistemic un-
certainty. The domain has stochastic elements but human experts use experience and re-
member previous incidents and consider them when solving new problems, and do not
think about the domain as conditional probability distributions. For such domains, a hu-
man expert provides an initial set of illustrative cases for the CBR component, which
attempts to cover the range of problem categories the expert usually considers in their
work.

Additonally, our architecture is designed to support sustained learning, where the
system continues to learn from new problem solving experiences while it is running,
by evaluating the proposed solution of a problem based on its outcome. In the CBR
component this is the purpose of the retain step, which adds new cases to the case base
and generalizes and improves existing cases. On the other hand, the underlying aleatoric
uncertainty in the domain means that a BN system can perform well if it is trained on
statistically representative training data.

For a new problem query, our system chooses either the CBR or BN component
based on their empirical performance on the most recent problems the system has solved.
The underlying assumption in this approach to hybridization is that a reasoning method
which performs well on a certain task will continue to do so in the future, and that
changes in classi cation accuracy when learning occur gradually.

6. Discussion

When our assumptions are correct, the characteristics of such a domain means that a
CBR system created using expert knowledge will quickly be able to produce fairly good
results, by using a simpli ed model that’s a direct expression of the expert’s methodology
and understanding of the domain. However, for the way the CBR system is used in this
scenario, the sustained learning aspect will be limited. This is because the cases learned
from the domain will not have the additional richness of an expert trying to communicate
the signi cant effects in the domain, they will just be the problems the system happens to
encounter. The sustained learning aspect will therefore mostly be accomplished by lling
in data for which the expert didn’t already provide guidance, while the performance on
already covered cases will stay but not increase signi cantly.

On the other hand, the BN reasoner will start out from a very disadvantaged po-
sition. BN’s statistical learning is founded on learning the probabilistic relations in the
domain from training data, and using these learned relations to solve problems. A set of
illustrative cases provided by an expert will typically not have the statistical properties
as the real problems to be solved. However, the BN will be able to take full advantage of
the new problems the system encounters. These problems will naturally be drawn from
the same distribution the system has to solve, because they are the problems the sys-
tem encounters. Because of how the BN does not receive useful information from the
expert in this scenario, the BN component will initially perform poorly, but learn well
from the problem solving experiences that contain the real outcome from using the solu-
tions to address the problems in the real world. In our scenario the BN component uses
a fundamentally different approach to solving problems in the domain, which will im-
prove as new problems are solved and can go beyond the human expert’s and the CBR
component’s approach.

A bene t of using an automatic metareasoning approach to create these combina-
tions is that the computations can be dynamically adapted. For our scenario, this means
that we empirically detect when there is enough representative training data for the BN to
generally produce better results than the modeled CBR knowledge base. Even when our
qualitative assumptions hold, we cannot reliably predict in general how much training
data would be needed for the BN to be preferable, which depends on the exact charac-
teristics of the speci c task being performed.

The metareasoning layer also adds additional learning challenges to the combined
reasoning system. If only the outcome of the nal chosen solution can be retrieved, then
there is an additional exploration/exploitation aspect connected to choosing whether to
update the performance data for the assumed "worst" method, or simply using the "best"
method to get the best results. The meta-level learning also adds an additional learning
bias about the reasoning methods. For an especially peculiar domain where the relative
performance of CBR and BN methods uctuated wildly as they learned, the metareason-
ing layer would not be able to learn from its performance measurement meta-data, and
this approach would not work.

Our metareasoning architecture can be extended in numerous ways, using both CBR
and BN methods and possibly including other reasoning methods as well. The presented
architecture matches the identi ed strengths and weaknesses of CBR and BN regarding
types of domain uncertainty, but it is possible to add additional improvements on top.
One approach is to also include hybrid sequential combinations as base reasoning com-
ponents, and choosing the hybrid combination sequence that produces the best empirical
results. Another approach is to use a form of CBR at the meta-level: instead of evaluat-
ing the most recent performance, we can evaluate the most recent performance on sim-
ilar problems, using an additional meta-level similarity measure that is suitable for this
purpose.

The CBR and BN methods used in the metareasoning hybrid approach can also
provide extended functionality in addition to solving problems.As two notable examples,
the CBR approach is particularly good at adding exceptions that can be used to retrieve
short-cut solutions instead of performing the normal reasoning, and BN can answer many
other questions about the statistical properties of the domain, such as the probability for
every possible classi cation as a solution, or the chance of a problem having particular
attributes given the observed outcome.

7. Acknowledgements

The reported research is partially funded by the TLCPC project, Norwegian Research
Foundation under contract no. NFR-183362.

References

[1] M. T. Cox and A. Raja, “Metareasoning: A manifesto,” tech. rep., BBN TM-2028, BBN Technologies,
2007.

[2] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and
system approaches,” AI Communications, vol. 7, pp. 39–59, March 1994.

[3] J. Kolodner, Case-based reasoning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[4] R. L. de Mántaras, D. McSherry, D. G. Bridge, D. B. Leake, B. Smyth, S. Craw, B. Faltings, M. L.
Maher, M. T. Cox, K. D. Forbus, M. T. Keane, A. Aamodt, and I. D. Watson, “Retrieval, reuse, revision
and retention in case-based reasoning,” Knowledge Eng. Review, vol. 20, no. 3, pp. 215–240, 2005.

[5] R. C. Schank, Dynamic Memory: A Theory of Reminding and Learning in Computers and People. New
York, NY, USA: Cambridge University Press, 1983.

[6] V. L. Patel, D. R. Kaufman, and J. F. Arocha, “Emerging paradigms of cognition in medical decision-
making,” J. of Biomedical Informatics, vol. 35, pp. 52–75, February 2002.

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,
CA.: Morgan Kaufmann Publishers, 1988.

[8] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs. Berlin, Germany: Springer-
Verlag, 2007.

[9] J. Pearl, Causality – Models, Reasoning, and Inference. Cambridge, UK: Cambridge University Press,
2000.

[10] M. Henrion, M. Pradhan, B. Del Favero, K. Huang, G. Provan, and P. ORorke, “Why is diagnosis using
belief networks insensitive to imprecision in probabilities?,” in Proceedings of the Twelfth Conference
on Uncertainty in Arti cial Intelligence, (San Mateo, CA.), pp. 307–314, Morgan Kaufmann Publishers,
1996.

[11] D. J. Spiegelhalter and S. L. Lauritzen, “Sequential updating of conditional probabilities on directed
graphical structures,” Networks, vol. 20, pp. 579–605, 1990.

[12] S. L. Lauritzen, “The EM-algorithm for graphical association models with missing data,” Computational
Statistics and Data Analysis, vol. 19, pp. 191–201, 1995.

[13] G. F. Cooper and E. Herskovits, “A Bayesian method for the induction of probabilistic networks from
data,” Machine Learning, vol. 9, pp. 309–347, 1992.

[14] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The combination of
knowledge and statistical data,” Machine Learning, vol. 20, pp. 197–243, 1995.

[15] N. Friedman, “The Bayesian structural EM algorithm,” in Proceedings of the Fourteenth Conference on
Uncertainty in Arti cial Intelligence, (San Francisco, CA.), pp. 129–138, Morgan Kaufmann Publishers,
1998.

[16] J. R. Alcobé, Incremental Methods for Bayesian Network Structure Learning. PhD thesis, Universitat
Politécnica de Catalunya, 2004.

[17] T. Bruland, A. Aamodt, and H. Langseth, “Architectures Integrating Case-Based Reasoning and
Bayesian Networks for Clinical Decision Support,” in Intelligent Information Processing V (Z. Shi,
S. Vadera, A. Aamodt, and D. Leake, eds.), pp. 82–91, Springer, 2010.

[18] P. Gomes, “Software design retrieval using Bayesian Networks and WordNet,” Lecture Notes in Com-
puter Science, pp. 184–197, 2004.

[19] A. Aamodt and H. Langseth, “Integrating Bayesian Networks into Knowledge-Intensive CBR,” in AAAI
Workshop on Case-Based Reasoning Integrations, 1998.

[20] R. Pavón, F. Díaz, R. Laza, and V. Luzón, “Automatic parameter tuning with a Bayesian case-based
reasoning system. A case of study,” Expert Systems With Applications, vol. 36, no. 2P2, pp. 3407–3420,
2009.

[21] P. Louvieris, A. Gregoriades, and W. Garn, “Assessing critical success factors for military decision
support,” Expert Systems with Applications, 2010.

[22] S. Costantini, “Meta-reasoning: A survey,” in Computational Logic: Logic Programming and Beyond,
Essays in Honour of Robert A. Kowalski, Part II, (London, UK), pp. 253–288, Springer-Verlag, 2002.

[23] T. G. Houeland and A. Aamodt, “An introspective component-based approach for meta-level reason-
ing in clinical decision-support systems,” in Proceedings of the First Norwegian Arti cial Intelligence
Symposium (NAIS’09), pp. 121–132, Tapir Forlag, 2009.

[24] M. T. Cox, K. Eiselt, J. Kolodner, N. Nersessian, M. Recker, and T. Simon, “Introspective multistrategy
learning: On the construction of learning strategies,” Arti cial Intelligence, vol. 112, pp. 1–55, 1999.

116

Paper F

A Learning System based on
Lazy Metareasoning

Authors: Tor Gunnar Høst Houeland and Agnar Aamodt

Published in: Progress in Artificial Intelligence, vol 7 issue 2, pp. 129–146. Springer
Berlin Heidelberg (2018)

https://doi.org/10.1007/s13748-017-0138-0

My contributions: I developed the ideas, research, and experiments presented in the
paper, wrote the initial draft, and incorporated comments and suggested changes
into the text.

117

Progress in Artificial Intelligence manuscript No.
(will be inserted by the editor)

A Learning System based on Lazy Metareasoning

Tor Gunnar Houeland · Agnar Aamodt

Received: date / Accepted: date

Abstract Metareasoning has been widely studied in the lit-

erature, with a wide variety of algorithms and partially over-

lapping methodological approaches. However, these meth-

ods are typically either not targeted towards practical ma-

chine learning systems, or alternatively are focused on achiev-

ing the best possible performance for a particular domain,

with extensive human tuning and research, and vast com-

puting resources.

In this paper our goal is to create systems that perform

sustained autonomous learning, with automatically deter-

mined domain-specific optimizations for any given domain,

and without requiring human assistance. We present ALMA,

a metareasoning architecture that creates and selects reason-

ing methods based on empirically observed performance.

This is achieved by using lazy learning at the meta-level, and

automatically training and combining reasoning methods at

run-time.

In experiments across diverse data sets, we demonstrate

the ability of ALMA to successfully reason about learner per-

formance in different domains and achieve a better overall

result than any of the individual reasoning methods, even

with limited computing time available.

Keywords Metalearning · Automated reasoning · Inte-

grated learning architectures · Lazy learning · Machine

learning

1 Introduction

There are a wide variety of different computer reasoning

methods available, which all have their own strengths and

T. Houeland · A. Aamodt
Department of Computer and Information Science
Norwegian University of Science and Technology,
Trondheim, Sør-Trøndelag, Norway
E-mail: houeland@gmail.com

weaknesses. Determining the most appropriate method to

use in a system depends on the particular domain it will be

used for, and can be both challenging and time-consuming.

This general topic has seen increased interest in the last years,

as noted by the e.g. the AutoML challenge [18] and similar

efforts within deep learning where the structure of the net-

work is learned automatically [53]. In this paper we present

ALMA, a metareasoning architecture that addresses this prob-

lem by creating systems that adapt to specific domains auto-

matically, within an online learning paradigm.

In a previous paper [23] we examined how existing ex-

pert knowledge and new knowledge learned from training

data can be combined in hybrid systems. This included a

metareasoning scenario with three pieces: a static prespecified

expert model, a classification model trained from data as

it becomes available, and a meta-level control agent. The

meta-level agent worked by detecting at run-time when the

classification learning algorithm had been sufficiently trained

to outperform the expert model, and switched to using the

trained model from that point onwards.

In the current work we examine how to create this type

of hybrid reasoning systems automatically, without requir-

ing new system- and domain-specific expert knowledge for

each situation. The goal of our research is to develop a frame-

work for metareasoning based on lazy learning, i.e. to learn

which reasoning methods to apply, and when to apply them,

at run-time. The core of the architecture is to be implemented

in a learning system and tested, as a proof-of-concept, in

comparison with other systems.

To achieve this goal, ALMA is designed to support ef-

ficient and sustained meta-level learning over time, where

the system continues to learn from new problem solving ex-

periences while it is running, without human intervention.

The basis for this learning in ALMA is that we assume that

while reasoning method performance will vary across dif-

ferent tasks and domain characteristics, a method which has

2 Tor Gunnar Houeland, Agnar Aamodt

performed well so far for a given task will typically continue

to work well for that same task in the future.

This separates ALMA from many other forms of meta-

reasoning, notably forms that focus only on optimizing a

single model, and metareasoning that focuses on addressing

specific identifiable failures in the system’s behavior.

We explore the differences between these metareasoning

approaches and their motivation and related literature in sec-

tion 2. We then present an overview of the ALMA architec-

ture in section 3, and the specific metareasoning components

we use in section 4. Section 5 describes experimental results

from using ALMA, and section 6 compares ALMA’s behav-

ior with related metareasoning systems. Concluding remarks

in section 7 end the paper.

2 Metareasoning systems

ALMA is an architecture for incrementally predicting solu-

tions and learning from feedback, with a focus on learning

at the meta-level to continually improve prediction perfor-

mance over time. In the following sections we compare and

contrast this behavior with other forms of learning systems.

2.1 Lazy learning

Laziness in the machine learning sense is used in contrast to

eager learning, and means to avoid eagerly building gener-

alizations from experiences in a preliminary learning phase

[1]. Instead, the source data is retained, and generalizations

are built in the problem solving phase when the specific

problem query is already known. This allows more infor-

mation to be used during the generalization, for example by

building simpler models for only the part of the problem

space near the particular query to solve instead of global

models covering the entire space.

Certain aspects of lazy learning are essential for ALMA,

as the underlying goal is to autonomously learn new infor-

mation at run-time, without human assistance. To achieve

this goal, generalizations must be created by the system while

it is running and solving problems.

However, laziness comes at a cost. The ”utility problem

for lazy learners” [16] occurs when the addition of more

information to the system increases the costs more than the

benefit it brings, thus reducing utility. However, Watson [48]

reported that in a commercially fielded system, the utility

problem did not become a problem in practice. In an earlier

paper [22] we showed that whether techniques to address the

utility problem are beneficial or not always depends on the

specific reasoning scenario, and that premature attempts to

address it eagerly can do more harm than good.

Our goal in ALMA is to optimize whole-system perfor-

mance - to produce the best possible overall results - and

not just perform isolated optimizations to parts of the sys-

tem that may or may not end up being beneficial. Because

of this, we focus on how the different parts of the system

combine and work together for a specific situation, and on

optimizing the combined functionality of the entire system

problem-solving cycle. One of the major parts of this is in-

creasing the capabilities for being lazy at the metareasoning

level compared to other architectures and typical systems in

use.

In ALMA, choosing the reasoning method is postponed

until the problem solving phase and performed automati-

cally at run-time. This means that more information is avail-

able, such as performance data on how reasoning in the do-

main has behaved so far (e.g. whether techniques to address

the utility problem are helpful or not), possible shifts in the

domain over time, and even being able to adapt new reason-

ing methods that were not available during the initial system

design but were plugged in later.

Using a lazy approach at the meta-level, we can selec-

tively include the optimizations that are actually improving

the observed results for each specific domain, while avoid-

ing optimizations that might have only looked good on pa-

per or only perform well on other data sets. The benefit of

our approach is that the system automatically learns which

optimizations work for a given domain.

2.2 Meta-level learning

To learn and generalize beyond the training examples some
inductive bias is always needed [34], and whether learning is

successful or not depends on how the bias interacts with the

unknown domain characteristics. The study of meta-learning

is to examine how to increase learning efficiency through

experience, which Vilalta and Drissi [46] defines as choos-

ing the correct inductive bias. In this view the role of meta-

learning is precisely to dynamically shift the inductive bias

in a way that achieves better results, which in ALMA cor-

responds to changing which reasoning components are se-

lected.

There is a rich variety of research related to meta-learning

from different specialized fields [28]. To illustrate where

ALMA fits in this research landscape, we compare and con-

trast important related metareasoning approaches by roughly

dividing them into three groups:

– Using dataset metadata characteristics to select an ap-

propriate learning method [32]. A typical example would

be to identify e.g. training set size and whether features

are categorical or continuous as being important, and us-

ing rules based on these values to select an algorithm.

This form of metareasoning is often performed man-

ually, in which case a common approach is to select

A Learning System based on Lazy Metareasoning 3

methods based on how well their biases are perceived

to match domain characteristics.

– Identifying and correcting problems [36,13]. In this case

we do not know what methods will perform well, but we

can identify when something has gone awry: for exam-

ple when the generated solution is too costly, has con-

flicting steps that need to be resolved, or an internal part

of the system did not perform as expected.

– Repeatedly generating and empirically testing potential

solution methods [50,35,40]. Here we might not know

about important data set characteristics or what form the

solution process should take, but a meta-algorithm can

attempt to solve the problem using many different meth-

ods, and evaluate how well these methods actually work

in practice for the given data set. New approaches and

modifications are attempted until an acceptable solution

is found. This is the approach used in ALMA. The main

feature that distinguishes ALMA from other methods is

its focus on lazy learning to achieve this.

2.3 Reasoning from dataset characteristics

This is the most straight-forward form of metareasoning,

where certain metadata describes the dataset, and is used to

select a particular well-suited method. This can e.g. be a set

of hand-crafted rules, a learned classifier based on examin-

ing a large number of datasets and automatically determin-

ing relationships between characteristics and methods, or an

expert’s intuition.

This form of metareasoning is very common when per-

formed by humans, and is well established in the literature

with a large number of approaches and methods proposed.

However, it is less relevant for this paper as the types of

rules humans apply are often too vague to apply algorithmi-

cally, and the general approach of pre-determining a single

method based on static dataset metadata is not compatible

with our goal of sustained autonomous learning.

An alternative is to use dynamic metadata that is col-

lected at runtime instead of a static set of dataset character-

istics. In the case of collecting metadata about empirically

observed performance, we consider this a form of repeatedly

generating and testing potential solution methods as will be

described in 2.5.

2.4 Failure-driven learning

Failure-driven learning systems are not as extensively re-

searched as the other meta-level learning groups, but we

highlight them as they are well-established within lazy rea-

soning systems. This type of system is most commonly based

on learning from traces of object-level reasoner behavior

[13] (which can be viewed as using dynamic metadata). These

traces list the steps of the process that the object-level rea-

soner performs, and then a form of meta-level control is used

to examine the list of steps, detect problems, and correct

them.

The usual form of such meta-level control is focused on

‘reasoning failures’, where the system runs as normal with-

out metareasoning until an unexpected result, or an ’im-

passe’ [27], is encountered while solving a problem. Such

results can e.g. be arriving at an incorrect answer, determin-

ing that a more similar case to the answer exists but was

not retrieved, or even lacking any method to solve a certain

kind of problem. This approach is based on the intuition that

metareasoning is particularly valuable when something un-

expected happens, and that there is no reason to change the

system if it is performing as expected without any problems.

Adding this type of introspective error detection and trig-

gering of repair actions can successfully improve the per-

formance of an underlying reasoning system automatically,

even enabling the system to correctly solve problem instances

that the underlying reasoner could not solve on its own [15].

However, detecting failure, determining the reasons for

it, and then correcting them is a difficult process and a re-

search problem in its own right. As an example, starting

with an example from the literature of a lawn has not been

cut properly [12], you would first have to figure out that the

lawnmower is malfunctioning, that this is caused by a loose

wheel, and then figure out how to repair it. This is a cogni-

tively harder problem than simply cutting the lawn.

In particular, in a complex system it is typically not straight-

forward to determine what constitutes a reasoning failure,

nor the way to fix it. In practice these systems will often

consist of rules that have been pre-determined by human ex-

perts. For example, the implementation of GILA used failure

patterns provided by the authors of the system, and investi-

gating whether the patterns could be learnt from experience

was left as a possible line of future research [36].

In contrast to this failure-driven approach to metareasoning,

our work focuses on learning in a more general and flexi-

ble sense, without necessarily being tied to a problem solv-

ing failure. Learning opportunities are assumed to always be

present, even when nothing is explicitly identifiable as being

‘wrong’.

2.5 Method combination and evaluation

The essence of multi-method learning is to use and com-

bine multiple learning algorithms in some way to improve

the overall performance. Even within this sub-field, there is

a vast and varied number of approaches in the literature, and

it is growing rapidly [50]. For ALMA we are particularly in-

terested in the meta-algorithms that are used to combine ma-

chine learning methods and evaluated based on empirically

estimated accuracy.

4 Tor Gunnar Houeland, Agnar Aamodt

One well-known form of this multi-method learning has

been found in the boosting literature [41], where meta-algorithms

train many different versions of basic learners and combine

them in an ensemble that is better than any of the single

individual learners, based on the observed performance of

the learners. Research into this topic has provided useful al-

gorithms for boosting the performance of practical machine

learning approaches, by treating the machine learning meth-

ods as black box abstractions and improving them at the

meta-level. In this regard it has the same objective as our

research, where we use a different approach to follow some

of these same ideas.

This form of meta-level combination and evaluation has

also been studied with different names and approaches in

several other related fields, for example:

– Hyperparameter optimization [43], choosing the best pa-

rameters for a learning algorithm, with a focus on mini-

mizing the number of evaluations.

– Prediction with expert advice [8], minimizing regret com-

pared to reference forecasters, with a focus on worst-

case performance (adversarial experts).

– Ensemble learning [26,33,7,14], based on combining

multiple different versions of a classifier, reminiscent

of statistical ensembles that consider all possible world

states at once.

– Multi-level learners [49,10] (also called stacking or blend-

ing), where multiple base-level learners produce output,

and higher levels of learners are trained with this output

from the lower levels as input.

– Portfolio selection [30], optimizing wealth across assets,

with a focus on the trade-off between expected return

and risk.

– Combining forecasts [47,11,3], the general notion of com-

bining multiple different predictions of the future with

independent errors and variance to produce an overall

more accurate outcome.

These approaches represent different focus areas, but have

significant overlaps and are all based on using meta-level

methods to evaluate and use different versions of object-

level methods. Our focus will be on describing the process

used in ALMA, as iteratively making decisions in an un-

known decision space. This process could be studied in any

of the fields listed above, but is most closely associated with

hyperparameter optimization and prediction with expert ad-

vice.

We later compare ALMA against a selection of related

metareasoning systems in section 6, after describing how

ALMA works in theory and practice.

2.6 Reinforcement learning and multi-armed bandits

In reinforcement learning an agent attempts to maximize its

rewards from an environment that is not fully known, and

has to learn how to behave and what actions to take based

on receiving a reward signal. This creates two opposing and

contradictory goals: the agent should spend time performing

the actions that it expects will provide the greatest reward,

but at the same time it should try to learn more about the

environment to make sure that the agent’s expectations are

correct and it is performing the correct actions. If new in-

formation from the environment shows that another action

would be more beneficial, the agent should adapt its behav-

ior accordingly. This is called the exploration-exploitation

trade-off, as an agent is typically not able to do both at the

same time, and has to choose between them. (E.g. to learn

the effect of choosing option X over option Y, you actually

have to choose option X. If the agent is expecting option

Y to perform better, this exploration of choosing option X

naturally incurs an expected loss.)

A famous problem exemplifying the exploration-

exploitation trade-off is the multi-armed bandit problem. In

this problem a gambler can choose between many differ-

ent slot machines in a casino, where each machine has its

own probability distribution for what rewards it will pro-

duce. The problem for the gambler is to choose which ma-

chines to play. In the traditional setting the gambler has

no initial knowledge of the machines, and can only learn

about their reward distribution by attempting to play them,

which means not playing one of the other - possibly better

- machines. Solutions to this problem can be used to ad-

dress many real-world situations, from clinical trials [44] to

internet advertising [9], where choosing between multiple

options with uncertain results can be modeled as choosing

which slot machine to play. The multi-armed bandit prob-

lem can be seen as a more restricted and structured instance

of reinforcement learning, as e.g. the rewards can be directly

linked to the corresponding actions with certainty.

In ALMA we model decisions at the metareasoning level

as essentially such a multi-armed bandit problem, and adapt

existing multi-armed bandit strategies to work in the meta-

reasoning setting.

3 The ALMA architecture

The ALMA architecture is based on a functional decompo-

sition of system behavior into three reasoning layers, which

correspond to basic problem-solving (L0), domain learning

(L1), and introspective metareasoning (L2). In this section

we describe the ALMA reasoning process and how these rea-

soning layers are used.

A Learning System based on Lazy Metareasoning 5

3.1 Problem solver selection

Metareasoning in ALMA consists of choosing what reason-

ing methods to use for each input query, which can be seen

as repeatedly solving the algorithm selection problem [37]:

select a good algorithm, for a large and diverse problem

space, from a large and diverse algorithm space, using com-

plex performance criteria.

The ALMA metareasoning process consists of evaluating

a sequence of reasoning components, starting with a fixed

metareasoning root component (L2). Iteratively, the current

active component is evaluated and passes control to the next

component, which is either at the same metareasoning level

or a lower one. Often one or more of these components will

be new, never-before-used components that are internally

constructed at run-time during the reasoning process. In this

way the system is dynamically exploring the space of pos-

sible components, not just evaluating a fixed set of options.

Once an L0 component is reached, it can simply be evalu-

ated with the current problem query as the input, and will

output a proposed solution to the input problem query. The

meta-level learning in the system comes from remembering

which components were used for each problem-solving at-

tempt, and assigning them credit based on the quality of the

solution.

As an example, the process of solving a single input

problem query might be: start with the root L2 component

and use performance data as input → create a new L2 com-

ponent and use performance data as input → choose an ex-

isting L1 component and use training data as input → create

a new L0 component and use the problem query as input →
return the output as the solution to the problem query.

As all these problem-solving attempts start at the root

component, the set of all reasoning paths encountered across

multiple problem solving attempts can be viewed as a tree.

Each node in this tree is assigned a score based on the aggre-

gate credit from all solutions that were generated based on

using that component, i.e. based on observed performance of

the subtree formed under the node. Figure 1 shows a simple

example of such a component tree.

For smaller systems it is possible to simply try every rea-

soning method on every input, and thus gather information

about all of them at the same time when the correct solution

is supplied later. This allows full exploration gains while the

best-performing subtree can be exploited every time with-

out losing out on exploration opportunities. However, there

can be a combinatorial explosion of possible methods and

the ability to try different methods (particularly training new

models) is limited by runtime CPU resources, which is an

important issue often not sufficiently addressed in the liter-

ature. In our work we also use unbounded trees to explore

new combinations and new parameter settings - subtrees that

lazily expand themselves forever to grow larger when they

2

1 2

0 0 0 0

0 L0

0 0

L1

L11

1

A,B,C

A B,C

B C

Fig. 1 Snapshot of a (tiny) ALMA component hierarchy. The L0 boxes
represent non-learning instances of fully trained classifier functions,
e.g. decision trees and neural networks. A single ALMA system typ-
ically contains a heterogenous variety of such classifier instances. L1

boxes represent methods that learn from training data, and L2 boxes
represent the metareasoning components that ALMA is focused on.
The shaded subtree illustrates score aggregation, where the L1 com-
ponent marked ”A,B,C” is scored based on the combined scores of the
L0 components marked ”A”, ”B”, and ”C”

are explored. Trying every possibility is of course not possi-

ble in this case.

3.2 Metareasoner properties

Our metareasoner’s task is to achieve the best overall result

by incrementally selecting which reasoning method to use

for each problem. This directly maps to choosing the best

child node, which we view as conceptually playing an arm

in the multi-armed bandit setting. Instead of having a single

multi-armed bandit, we have a horizontally and vertically

unbounded hierarchical structure of bandits and sub-bandits,

representing the possibility of creating new components in-

stead of reusing existing ones.

To evaluate the available options for a single component

at a given step in the process, we can still model this as a

regular multi-armed bandit problem. Each of the previously

visited child node components represents an arm on the ban-

dit, with the observed solution quality from previous visits

forming the basis for estimating the value of the component,

just like previous rewards from playing a bandit arm is used

to estimate the value of playing the arm. The option to create

a new child component is another arm on the bandit, with an

unknown value.

There is a certain degree of uncertainty about how well

the reasoning methods will perform, because of uncertainty

in the domain itself, stochastic behavior for some of the rea-

soning methods, and fundamentally because the reasoning

performance changes over time as more training data be-

comes available. This is precisely captured by the evalua-

6 Tor Gunnar Houeland, Agnar Aamodt

tion of the reasoning methods as an exploration/exploitation

problem and using established strategies for the multi-armed

bandit problem to explore the decision space. Our metarea-

soner therefore also inherits this ability to optimize its own

performance by choosing between focusing on the assumed

best method to get good results, or to further examine other

methods with more uncertain characteristics to find a poten-

tially better reasoning method for the future.

3.3 Reasoning meta-layers

ALMA describes reasoning systems using functional layers,

in the sense that all components on the same layer imple-

ment functions that operate on the same kinds of inputs and

outputs, and these outputs are deterministic functions of the

input1. We define these functions as belonging to L0, L1, or

L2 (and refer to components as belonging to the same level

as their corresponding functions):

Definition 1 Let L0 be the set of functions mapping input

problem queries to solutions: Query → Solution.

Let L1 be the set of functions mapping training data con-

sisting of problem queries and their solution to L0 functions:

TrainingData → L0.

Let L2 be the set of functions mapping performance data

to L1 functions: Per f ormanceData → L1.

L0 corresponds to fixed problem-solving procedures that

can output a Solution for any given Query. This could e.g. be

a set of if-then rules, a decision tree, or a feed-forward neural

network. This could for example be ”Always predict rain”,

or ”If x1 � 3, predict 0, else predict
√

x2”. These functions

do not change and therefore necessarily cannot learn.

L1 corresponds to algorithms that learn L0 functions

from domain training data. In ALMA the TrainingData is

a list of (Query,Solution) pairs corresponding to previously

issued queries. An example L1 function is ID3, a specific

algorithm for learning decision trees. These functions can

learn by selecting or creating new L0 functions that match

the provided training data.

L2 corresponds to systems that learn from how well they

are doing, i.e. not just from the object-level domain data, but

based on how well the system’s reasoning processes are per-

forming. These functions can learn by selecting or creating

new L1 functions that generalize well when predicting solu-

tions for unseen queries. This is the focus for ALMA, which

is directly based on learning based on previously observed

performance. The PerformanceData in ALMA thus consists

of scores for these functions, represented explicitly in the

1 Algorithms with stochastic behavior are modeled as different ran-
dom number generator states being different functions.

1-NN 5-NN 20-NN
Choose
new k

Root

Naive
Bayes

Caching
ID3

Use cached
decision tree

Compute
new tree

Train with
current data

k-NN
Tuning

Fig. 2 Example problerm-solving flow. For each new query, compo-
nents are recursively evaluated from the root node until arriving at a
leaf node. The leaf node component is used to predict the output so-
lution for the query. In this example the Tuning k-NN sub-tree is first
selected, then 5-NN, a new L0 component is trained using 5-NN, and
this new component is used to answer the problem query. (Previously
trained L0 components are not shown in this figure)

form of (Query, components used, Solution, Result) perfor-

mance records, which are used to assign accuracy scores for

the components in the system. E.g. for a classification com-

ponent the overall score is the number of correct predictions

made for newly received queries when using a component,

divided by the number of predictions made.

In other systems the form of Performance data used

will be different. For example, using back-propagation to

iteratively refine weights in a neural network will implic-

itly encode parts of the performance data into these learned

weights. Another example is using a pruning algorithm to

modify and improve the performance of an already-built de-

cision tree based on a hold-out data set.

3.4 Node hierarchy

When choosing how to solve a new problem query, the sys-

tem consults the component node hierarchy, which contains

the components in the system and additional information

about them. A core element of ALMA is to decompose the

reasoning process into these components that can be modi-

fied independently by the system.

The hierarchy is represented as a tree (as seen in fig-

ure 1), where each node contains a component and branches

represent alternative specialized choices that can be made.

The basic operation of the system is to evaluate each of the

possible branches and choose which child node to explore

further. Then the same process is repeated, until a final leaf

node is reached, which determines the L0 function to apply

to solve the problem instance.

Figure 2 shows an example of this node-selection behav-

ior. At the top layer, the system is choosing between three

components:

Tuning k-NN L2 parameter tuning component on top of k-

NN algorithm.

Naive Bayes L1 component using Naive Bayes algorithm.

Caching ID3 L2 caching component on top of ID3 algo-

rithm.

A Learning System based on Lazy Metareasoning 7

Then, if k-NN is chosen, at the next layer it would choose

the value of k among the three components 1-NN, 5-NN,

and 20-NN that have already been created (or create a new

component with a new value of k). These are L1 compo-

nents, which apply the k-NN algorithm with k = 1, 5, or 20.

Choosing the 5-NN component, it is then applied to all the

training data seen so far as input, to produce a new L0 com-

ponent as output. This L0 component is then applied to the

problem query as input, and the output is used as the final

prediction of the system.

When a node is evaluated, it can also change the node

subtree below it, in particular creating new components.

Using meta-components in this way, we represent an un-

bounded node hierarchy as sub-trees that are not expanded

until the node is evaluated.

The node selection algorithm is applied recursively at

each layer of the tree, and the process of choosing between

alternative nodes is modeled as a multi-armed bandit prob-

lem as described earlier. To ”play” a node, we apply it to the

current problem instance, and the ”reward” is the observed

accuracy of the overall problem solving experience the node

was a part of.

3.5 Problem solver evaluation

We assume that a problem can be answered in many differ-

ent ways, and that each answer can be scored and compared

to the scores for other answers. In this way different com-

ponents can also be indirectly compared based on scoring

the answers they produce - if problems are being correctly

solved, that indicates the component is performing well.

A common way to compare different general algorithms

in this way is to manually evaluate them on data sets with

known answers [20] and measure the accuracy as how often

they predict the correct answer. The empirically measured

accuracy is then used as a measure of quality, to say that an

algorithm that scores higher is a better algorithm.

In our architecture the system itself is automatically and

continuously comparing the reasoning methods based on

their results in this same way. When the real solution to a

problem query is provided, the scores of components are up-

dated based on scoring the predictions they made. This is an

integral part of the reasoning process, and empirically mea-

sured accuracy forms the basis for how the overall reasoning

system decides which methods to use.

Many of the reasoning methods also have tuning param-

eters. These parameters affect both the results and the re-

source requirements for performing the computations. This

has practical consequences, because the final result is not

the only factor that matters for a reasoning system applica-

tion - the answer also has to arrive quickly enough to be

useful. There is usually a trade-off between solution quality

and computational complexity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1s 10s 100s 1000s 10000s

Ac
cu

ra
cy

Time spent in seconds

Reasoner performance for connect-4 dataset

Pareto frontier
L0 methods

Fig. 3 Example reasoner performance differences (using the methods
from 4.4). The points in the centers of the circles represent different
L0 reasoning methods and show their accuracy vs. time performance
records. The Pareto frontier of possible optimal choices representing
different accuracy/time trade-offs is shown as a solid line.

We formally analyze these differences in method per-

formance as a mapping from specific fully parameterized

L0 components to the results they achieve. The results in-

clude both the performance of the component’s function in

accurately solving problems, and the component’s computa-

tional performance as measured by the resources consumed

to execute the specific implementation of the algorithm the

component represents.

The best possibilities from these results form a Pareto

frontier - the set of optimal dominating choices. Choices on

the Pareto frontier involve a trade-off between accuracy and

resource cost, while the other dominated options are sim-

ply inferior. Figure 3 shows an example of such a Pareto

frontier, with a two-dimensional plot of the benefits of dif-

ferent reasoning methods measured as average accuracy vs.

time taken to compute the answers. The results on the fron-

tier dominate the rest of the results by either producing a

higher score with the same computational requirements, the

same score with less computation, or even a higher score

with less computation required. Some option on the frontier

will always be preferable to any dominated option not on the

frontier.

In ALMA we assume that reasoner performance will not

drastically change based on small changes in the training

data. Specifically we assume that past performance is in-

dicative of future performance, and that the discrepancy be-

tween previously observed and future performance is higher

for larger increases in available training data. This is the mo-

tivation for treating scoring as an exploration-exploitation

tradeoff - the potential increase in performance and there-

fore the value in obtaining new information for a component

is higher for a larger gap in training data between what has

previously been observed and what is currently available.

In figure 3, the L1 components that produced the L0

components with points closer to the Pareto frontier would

be evaluated more frequently than the ones far below the

8 Tor Gunnar Houeland, Agnar Aamodt

frontier, as they’re more likely to increase to a level above

the previously best choices. But even the poorly performing

components are retried eventually, since there’s a possibility

for large increases in performance once enough additional

training data is available.

4 ALMA components

ALMA uses a uniform component representation for all rea-

soning layers in the system. Problem solving is performed

by recursively evaluating components in the component

node hierarchy to determine which L0 function to use. Each

component is self-describing, using a component descrip-

tion language to specify which inputs it requires and what

outputs are produced (for details see [21]).

In this section we first describe 3 ALMA components

that illustrate the capabilities of the system related to our

research goals:

1. Child node selection component, which performs meta-

reasoning by choosing which components to use.

2. L0 function caching component, which trades off lazi-

ness and higher accuracy in exchange for lower compu-

tational requirements.

3. Parameter tuning component, which gradually optimizes

parameters based on observed empirical performance.

Finally we describe the learning methods available to the

system for our experiments, which are implemented as L1

components.

4.1 Child node selection component

The bandit strategy we use in our experiments to choose

which child node to evaluate next in the component node

hierarchy is to evaluate nodes according to the Upper Confi-

dence Bounds applied to Trees (UCT) algorithm [24]. We

chose this bandit strategy as it is particularly well-suited

for tree structures by applying it recursively at each level

as described earlier. This UCT algorithm is previously par-

ticularly well-known from computer Go, where the use of

tree-based exploration techniques ushered in a stronger gen-

eration of Go-playing programs than the previous state-of-

the-art expert systems [17,6], and was later used by the first

computer player to beat professional human Go players [42].

Applying the UCT algorithm consists of applying a uni-

form scoring function that automatically balances exploita-

tion and exploration (based on UCB1 [2]) to each of the pos-

sible choices: scorei = x̄i +
√

Ci × lnNi
ni

. Here x̄i is the mea-

sured average accuracy so far from choosing node i, ni is the

number of times node i has been explored, Ni is the number

of times node i’s parent node has been explored, and Ci is a

parameter that controls the weighting between the exploita-

tion and exploration term for node i.
In standard UCB1, the same constant Ci = 2 is used

for all nodes. However, some variants of UCB1 vary the

Ci parameter to achieve better practical performance on fi-

nite problem sets. In our experiments we use UCB1TUNED

(also from [2], and recommended as performing better in

practice), which has Ci = min(1
4 ,estimated variancei) in-

stead of a fixed constant value2.

4.2 Caching component

Instead of using an L1 function to relearn the problem from

scratch for every problem query, this metareasoning com-

ponent wraps the learning component with a cache. The L1

function will only be used to compute a new L0 function

when the number of node visits is a power of 2, i.e. after

1, 2, 4, 8, 16, 32, ... explorations. For other node visits, a

trivial L1 function is used instead, which simply ignores the

training data and reuses the latest previously computed L0

function. This approach is illustrated in figure 4.

The marginal accuracy for the caching component dis-

plays a step-wise behavior where the accuracy remains flat

when the cached classifier function is reused, and then in-

creases up to the underlying Naive Bayes classifier’s accu-

racy when it is recomputed at 2N queries. In the example,

the cumulative accuracy of the caching version is 97% of

the underlying classifier, while requiring 4% of the compu-

tational resources. Whether this trade-off is beneficial or not

is not known a priori but depends on the reasoning scenario.

Performing this caching is an eager optimization, and

undesireable from a lazy learning perspective. But it is one

way to enable using slower non-incremental methods that

would otherwise be too computationally expensive to in-

clude in a purely lazy manner.

Whether to apply the caching to a component or not is

automatically optimized in our system based on observed

behavior, in the same manner as choosing between any other

components, and it is only included when it is demonstrably

producing better outcomes.

4.3 Sequential parameter-tuning component

This component parameterizes an underlying component to

create many different versions, e.g. k-NN with different k
values. Initially, the component’s subtree consists of a single

tuning node with k = 1. When it is explored, the subtree is

2 Standard UCB1 can provably achieve asymptotic zero-regret for
the basic multi-armed bandit problem, while this has not been shown
for UCB1TUNED. However, the zero-regret proof doesn’t apply to the
harder metareasoning problem ALMA is addressing, and for our com-
ponents we are primarily interested in practical performance.

A Learning System based on Lazy Metareasoning 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

M
ar

gi
na

l a
cc

ur
ac

y

Training data size

Naive Bayes component
Naive Bayes component with caching

Fig. 4 The performance of an underlying learning component and the
effect of adding caching. The graph shows marginal accuracy, which
clearly displays the step-wise behavior of the caching component.

replaced with two child nodes: a regular node applying the

underlying component with k = 1, and a new tuning node

where k has been incremented by 1, i.e. a tuning node with

k = 2.

These nodes are explored using the normal UCT behav-

ior, and will recursively build a subtree for k = 1, k = 2,

k = 3, k = 4, etc. Using the UCT exploration/exploitation

algorithm, the choice about how high k should be increased

is automatically learned in the same way as other component

choices.

This is a very simple tuning component suitable for

choosing between relatively small positive integer values.

Whether it is beneficial to include or not is automatically

optimized at run-time in the same way as other components.

4.4 System reasoning components

An L1 function is implemented in our system as a procedure

taking a data set as input and returning as output a procedure

representing an L0 function. The k-NN, ID3, and Naive-

Bayes reasoning components use standard machine learning

methods from the literature, implemented directly as com-

ponents in our system with minimal overhead. These imple-

mentations are primarily used to verify and demonstrate the

core behavior of ALMA.

Our implementation also has a component for using

classifier implementations from WEKA [19]. This compo-

nent has significant overhead for learning an L0 function

based on the WEKA implementations, but gives access to

plugging into the system a wide variety of classifiers. This is

useful for evaluating practical multi-method metareasoning

performance.

In our experiments we used the following list of

classifier implementations from WEKA: AdaBoostM1,

AODE, BayesNet, DecisionStump, HyperPipes, IBk, Id3,

J48, JRip, LBR, LogitBoost, MultiLayerPerceptron, Naive-

Bayes, KStar, LMT, OneR, Prism, RandomForest, Ran-

domTree, SMO, VotedPerceptron, Winnow, ZeroR.

Fig. 5 Example system flow. This shows the process the system goes
through to solve a single problem query. The nodes in the tree corre-
spond to components that are recursively evaluated, until a leaf node
is reached which in turn produces a prediction for the given problem
query

5 Experimental results

In this section we first illustrate a real problem solving at-

tempt to show how a small ALMA system works. Afterwards

we present experiments that illustrate ALMA’s behavior and

performance when learning which reasoning methods to use

at run-time (our research goal) on a variety of data sets.

5.1 System processing flow

Figure 5 shows the process our system goes through when

solving a problem query using the UCT metareasoning com-

ponent, in this case showing the next query for the Travel

domain after having completed 500 previous queries (an ap-

proximately ‘average’ query scenario for that domain). The

objective in this classification task is to predict the price,

which has been discretised to ranges from [0-499] up to

[7000-7499].

The UCT algorithm scores each node according to the

UCB1TUNED formula to determine which child branch to

select. The score consists of two parts: the ‘exploit’ part

which here estimates the accuracy of a learning algoritm

(Correct / Attempted), and the ‘explore’ part which is an

optimistic estimate of the uncertainty surrounding this ac-

curacy estimate. The ‘explore’ part decreases every time a

component is selected, and increases every time a compo-

nent is not selected, ensuring that even an underperform-

ing component will eventually be revisited again (these in-

creases are logarithmic, meaning it takes longer and longer

between revisits if the component keeps performing poorly).

The system state before answering problem query 501 is

shown below:
Component Result Exploit + explore = value

root 152 / 500

root/1-NN 107 / 332 0.322 + 0.068 = 0.390
root/ID3 44 / 153 0.288 + 0.101 = 0.389

root/NB 1 / 15 0.067 + 0.322 = 0.389

10 Tor Gunnar Houeland, Agnar Aamodt

When answering problem query 501:

– The UCT algorithm starts at the root node and evalu-

ates each of the children: root/1-NN, root/ID3, and

root/NB.

– Child node root/1-NN is chosen because it has the

highest combined exploitation + exploration value com-

puted for the UCT algorithm: 0.390.

– root/1-NN is an L1 node for applying the 1-NN learn-

ing algorithm.

– 1-NN is trained on problem queries 1 to 500 to create a

new L0 component.

– The new L0 component predicts an answer for query

501: [1000-1499].

– The case 501 solution is [1000-1499], so the prediction

was correct.

– Performance records are added for the components in-

volved in the problem query: root and root/1-NN.

– Case 501 is added to the training data.

– When evaluating case 502, the ”Result” column for

root/1-NN will now be 108 / 333 with an ”exploit”

value of 0.324. The ”explore” value will decrease for

root/1-NN and increase for root/ID3 and root/NB.

5.2 Example implementation results with limited feedback

Scenario and restrictions:

– Problem queries arrive as described in 5.1.
– Exactly 1 method is used per problem query.
– Feedback is only provided for the method used.

The system’s task is to choose one of the available

problem-solving methods to solve each problem, and the

metareasoning problem is to sequentially decide which
method to assign to each problem instance.

For this scenario the system will exclusively perform

method-selection and only run a single prediction algorithm

for each problem query, without knowing the predictions

from the other unselected algorithms. This is the most re-

strictive scenario, where no additional time for exploration

is available, and is primarily suitable for testing and under-

standing how the UCT-based prioritization in ALMA works

in isolation.

The focus here is on the core objective, namely to test

ALMA’s ability to automatically learn which method best

suits each particular domain, at runtime, with no prior in-

formation (but will not produce the best possible result, as

these restrictions are partially artificial). The system cannot

perform any other metareasoning such as averaging or vot-

ing, and will not learn from any other sources than these core

problem-solving efforts.

The problem-solving task we use in this first example is

the Balance Scale data set [31], which consists of 625 cases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

1-
N

N
 a

cc
ur

ac
y

Training data size

Marginal accuracy
Cumulative average

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

ID
3

ac
cu

ra
cy

Training data size

Marginal accuracy
Cumulative average

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

N
B

ac
cu

ra
cy

Training data size

Marginal accuracy
Cumulative average

Fig. 6 Average marginal and cumulative accuracy for the Balance
Scale data set. The data points show the average marginal accuracy
for each incremental problem solving attempt, while the solid curves
shows the cumulative average accuracy over the entire data set up to
that point

each having 4 nominal attributes and a solution classifica-

tion. The 4 attributes interact in that they actually represent

the weight and distance on each side of a scale, and the class

represents whether the scale will tip to the left, tip to the

right, or that it is balanced.

For these experiments the reasoners learn from the set

of previous cases with attributes and solutions, and attempt

to predict the classification for a new case based on its at-

tributes. The goal is to maximize the cumulative accuracy

(number of correct predictions made for the entire data set).

5.2.1 Individual learning algorithm behavior

The system behavior is illustrated in figure 6, which shows

the individual performance of the reasoning methods. The

data points at the right-hand side of the graphs are mostly

above the curve for Naive Bayes, which means the aver-

age would continue to increase if there were more samples.

This observed behavior is in line with our expectation that

the methods will generally converge to different accuracy

values. The marginal accuracy in the figure roughly corre-

A Learning System based on Lazy Metareasoning 11

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600

S
e
le

c
ti
o
n
 %

Training data size

1-NN ID3 Naive Bayes

Fig. 7 UCT-select behavior for the Balance Scale data set. The graph
shows the average fraction of queries where each of 1-NN, ID3, and
Naive Bayes are chosen for the Nth problem query. Naive Bayes per-
forms the best on this data set, and the system correctly learns to prior-
itize using Naive Bayes higher than the other methods

sponds to a best estimate of method performance (the fig-

ure shows the average over hundreds of trials, which is not

available to the system as it only has a single history of hits

and misses available). The cumulative accuracy represents

the overall score achieved by each method (and still roughly

identifies which methods are better or worse, while being

significantly less noisy).

The method’s observed performance varies from data set

to data set, and forms the input for selection at the meta-

reasoning layer. This reasoner data is not directly available

to our metareasoner, but must be estimated by sampling at

run-time, which is conceptually sampling points from these

graphs to determine which method performs best.

5.2.2 UCT metareasoning component

Figure 7 shows the average selection behavior of the UCT

metareasoning component for the Balance Scale dataset us-

ing these 3 methods.

Initially, with no data collected about their performance,

the three methods are chosen approximately 1/3rd of the

time each, as expected. As more and more data is collected,

the system is increasingly focused on Naive Bayes, having

identified it as the best method (highest ’exploit’ part in the

UCB1TUNED scoring formula). The confidence in the ac-

curacy estimates also increase over time, and the system

spends less and less time on exploring the other two methods

(slower increases for the ’explore’ part).

These results illustrate how our child node selection

component can address the metareasoning problem in prac-

tice and enable the system to continuously learn and im-

prove at the meta-level.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

Ac
cu

ra
cy

Balance Scale training data size

Reasoners
UCT-select

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500

Ac
cu

ra
cy

Car training data size

Reasoners
UCT-select

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Ac
cu

ra
cy

Travel training data size

Reasoners
UCT-select

Fig. 8 Aggregate system behavior for 3 different data sets. The thin
dashed lines in the graphs represent the performance of individual rea-
soning methods (1-NN, ID3, Naive Bayes) while the thick line is UCT-
select’s performance using those three methods

5.2.3 Aggregate system behavior for multiple data sets

Table 1 and figure 8 show the performance of the reasoning

methods across three different data sets: Balance Scale [31],

Car [31], and Travel [29].

The optimal behavior for the reasoning metalayer given

complete and perfect information would be to always pick

the highest-accuracy method for each data point. This ideal

corresponds to always picking the top line in the graph for

each training data size, and represents the set of Pareto effi-

cient options (those not dominated by any other option).

The behavior of our system using empirical observations

of reasoning method behavior and optimistic UCT estimates

to approach this ideal is shown as a solid line in the graph.

Each method is expected to roughly converge towards an

average accuracy number, and the system attempts to find

and choose the method with the highest cumulative accuracy

so far.

12 Tor Gunnar Houeland, Agnar Aamodt

Table 1 Cumulative accuracy for 3 small data sets. UCT-select does not reach the highest accuracy on any individual data set, but has the highest
average overall accuracy. The ”Percentage of best” columns show the cumulative accuracy as a fraction of the best method for each data set

Data set
Cumulative accuracy Percentage of best

1-NN ID3 NaiveBayes UCT-select UCT-select Random selection

Balance scale 63.8% 59.4% 84.6% 81.8% 96.7% 81.9%
Car 76.7% 73.9% 83.5% 82.3% 98.5% 93.5%
Travel 31.5% 26.5% 20.6% 30.1% 95.6% 83.1%

Average 57.3% 53.3% 62.9% 64.7% 96.9% 86.2%

5.3 Reasoning performance with limited resources

Scenario and restrictions:

– Problem queries arrive as described in 5.1.
– Problem queries must be answered within a certain time

limit, which is explicitly specified to the system.
– Feedback is in the form of the correct classification, and

can be used to train and evaluate multiple methods.
– Default parameters are used for all learning algorithms,

and the parameter-tuning component is not included.

As shown in figure 8, the accuracy and computational

cost of reasoning methods vary from data set to data set. The

optimal behavior for the reasoning metalayer would be to

always pick the highest-accuracy method that completes the

task within the allotted time. In this scenario ALMA attempts

to do so, but the time limit means that the ability to train is

limited and has to be prioritized between components.

In these experiments we use a variety of data sets and

the WEKA reasoner implementations combined with the

caching component as the underlying reasoning compo-

nents. The metareasoner’s job is to find reasoners that per-

form well for each given data set within the time limit. We

do this by prioritizing which components should receive

more time to train new L0 functions, based on the score and

time taken by the components so far. At the time a prob-

lem query deadline is reached, we use the presumed best L0

function to produce an answer, and when a new solution is

provided as feedback we update all component scores. (E.g.

after a RandomForest model has been successfully trained

for 256 cases, that model will be used until 512 cases have

been observed and a new model based on those 512 cases

has been trained, however long that takes. For ALMA sim-

ilar model training takes place, but using the UCT meta-

reasoning component to decide which algorithms to use and

when to retrain their models.)

Some form of normalization is required to compare ac-

curacy across data sets, as they vary wildly in difficulty and

data set size. We consider each of the data sets as equally

important, and normalize performance per dataset against

a target performance level. We set this target for each data

set as the highest accuracy achieved by any of the individ-

ual reasoning methods with default settings, and scored each

reasoning method according to their relative accuracy com-

pared to this benchmark. I.e. if the best of these methods

75%

80%

85%

90%

95%

100%

 0 20 40 60 80 100 120

O
ve

ra
ll

sc
or

e
Time limit, minutes

Overall reasoner score by time limit

ALMA
RandomForest

Fig. 9 Overall reasoning performance across all data sets, comparing
ALMA and the best individual reasoning method RandomForest. Given
sufficient time, ALMA considerably outperforms RandomForest and
the other individual reasoning methods

achieved 80% accuracy on a data set, scores would be scaled

by 1/80% = 1.25x. In this case achieving an accuracy of

80% would get a score of 100%, 0% accuracy would score

0%, and a hypothetical new component that reached 100%

accuracy would score 125%. The overall score for a rea-

soning method is then the mean score across all data sets.

(The important effect of this normalization is to make sure

the largest data sets don’t entirely dominate the results. Be-

yond that the exact procedure used does not significantly al-

ter the results.) Additionally, each method/dataset pair was

tested with 4 different random seeds to determine the order

of training examples, and the results show the average per-

formance across dataset orders.

Figure 9 and table 2 show an overview of the perfor-

mance in this scenario, comparing the overall scores of

ALMA and RandomForest (the best individual method). Fig-

ure 9 shows the overall performance at different time limits,

while table 2 shows more details broken down per dataset.

Table 2 also includes the results from the previous limited

feedback scenario for comparison, showing (as expected)

that ALMA performs better when the restrictions from 5.2

are removed and more methods are available.

The p-values listed in the table are the probabilities of

observing the differences between the classifiers by chance,

computed by an exact binomial test (as recommended in

[39]). For each dataset, where X is the number of times

ALMA predicted correctly and RandomForest predicted in-

correctly, and Y is the number of times ALMA predicted in-

correctly and RandomForest predicted correctly, the listed

p-value is Pr(k ≥ max(X ,Y);n = X +Y ; p = 0.5). I.e. the

A Learning System based on Lazy Metareasoning 13

Table 2 Data sets used and experimental results with a 1 hour time limit. Score differences larger than 5 percentage points are highlighted. The
UCT-select results from table 1 (converted to scores) are also included for comparison with the previous limited feedback scenario

Data set Size Target ALMA RandomForest Difference p-value UCT-select

agaricus-lepiota.data 8.1k 0.9978 99.19% 99.90% -0.71% 10−52

balance-scale.data 0.6k 0.8968 98.93% 81.18% +17.75% 10−74 91.21%

car.data 1.7k 0.9401 99.42% 94.00% +5.42% 10−40 87.54%

connect-4.data 68k 0.7913 90.57% 99.45% -8.88% 10−2552

covtype-subset.data 50k 0.6370 91.20% 78.60% +12.59% 10−679

house-votes-84.data 0.4k 0.9420 99.08% 99.33% -0.24% 10−1

kddcup-subset.data 50k 0.9976 95.04% 99.14% -4.10% 10−2303

kr-vs-kp.data 3.2k 0.9750 99.07% 99.21% -0.14% 10−0

monks-1.test 0.4k 0.8941 98.64% 90.68% +7.96% 10−14

monks-2.test 0.4k 0.7743 96.34% 84.30% +12.03% 10−24

monks-3.test 0.4k 0.9653 99.28% 98.32% +0.96% 10−02

nursery-casebase.json 13k 0.9700 98.74% 98.40% +0.34% 10−02

phishing-websites.data 11k 0.9565 98.87% 99.87% -1.00% 10−52

poker-hand-subset.data 50k 0.7975 83.99% 88.03% -4.04% 10−603

secom processed.data 1.6k 0.9330 96.94% 99.76% -2.82% 10−54

Skin NonSkin.txt 245k 0.9720 91.55% 98.84% -7.29% 10−14535

soybean-large.data 0.3k 0.7728 98.74% 93.47% +5.27% 10−04

SPECTF.test 0.2k 0.9144 98.83% 99.27% -0.44% 10−02

ThoraricSurgery.data 0.5k 0.8489 98.87% 99.25% -0.38% 10−01

tic-tac-toe.data 1.0k 0.9444 99.25% 89.14% +10.11% 10−72

travel-casebase.json 1.0k 0.3662 96.00% 78.73% +17.27% 10−17 82.20%

Average (mean score) 96.60% 93.76% +2.84% N/A

probability of observing an event at least k times out of n tri-

als (results at least as extreme as those we observed), given

that the chance is 50% each time . We know the actual prob-

ability is highly unlikely to be 0.5 since the methods work in

very different ways, nor will it be independent between sam-

ples since the methods are continually learning, but this pro-

vides some idea of how well the differences can be detected

empirically from the data alone. To illustrate, for soybean-

large.data, over the 4 random dataset orders, ALMA and

RandomForest were both correct 840 times, only ALMA was

correct 96 times, only RandomForest was correct 50 times,

and both were wrong 242 times. The p-value, or the chance

of observing this by chance if they were actually equally

good, is Pr(k ≥ 96;n = 146; p = 0.5) ≈ 0.0000875. Since

there are 21 datasets, the chance is approximately 21 times

larger (using a Bonferroni correction) that some dataset will

produce spurious results, though with many of the p-values

below 10−10 it is clear that ALMA and RandomForest do

not have the same behavior. The robustness of the results

for these particular datasets is also supported by the smooth

shape of the performance curve in figure 9, as there are no

wild fluctuations in the overall performance.

Table 3 shows two reasoning scenarios with different

time limits: our focus is on the ”1 hour” scenario wherein

each problem instance is presented in sequence and must be

answered within (1 hour / number of instances in the data

set), leading to a varied range from 14ms to 19250ms per

query. In this scenario our metareasoning system performs

well on every data set, and achieves an average score of

96.6% of the best reasoning method for each data set, out-

performing any single reasoning method overall.

The only way ALMA can gain the information required

to choose the right algorithm is by trying to apply the al-

gorithms to the data set in question. As can be seen by the

increasingly higher performance in figure 9 when more time

is available, ALMA is able to do this and autonomously learn

how to increase performance by making better choices. For

comparison, a similar but severely constrained scenario with

only 1 minute to classify the dataset is also included in the

table, showing a situation where ALMA does not perform

well. In this scenario there are purposefully not enough re-

sources available to spend time exploring multiple methods,

and it is significantly better to just pick one single method

and train it as much as possible.

6 Comparison with other systems

Bonissone’s approach to lazy meta-learning [5] is based on

the same type of meta-level model selection as ALMA, but

in a scenario where a large number of models have already

been built and are available in the cloud. Therefore the fo-

cus is on model selection and fusion, and it relies on model

meta-information being available. This differs significantly

from ALMA in that domain learning is not addressed (and

the details of the two approaches are quite different), but

we share a similar high-level research direction towards dy-

namic method combination, and in particular have the same

view on the ideal Pareto optimal set of methods for multi-

objective optimization.

14 Tor Gunnar Houeland, Agnar Aamodt

Table 3 Overall scores for ALMA and individual reasoning methods. Our focus is on the 1 hour scenario, with the 1 minute scenario shown for
comparison

Method 1 hour 1 minute Description

ALMA 96.6% 46.5% Our UCT-based metareasoning system
RandomForest 93.8% 81.9% Randomized ensemble learner creating decision trees

SMO 93.3% 76.2% Support vector machine algorithm using iterative optimization
LMT 93.0% 74.1% Classification trees with logistic regression at the leaf nodes

J48 91.7% 82.5% C4.5: Decision trees based on minimizing entropy, with pruning
LogitBoost 91.2% 82.7% Logistic regression boosting algorithm

IBk 90.7% 80.9% 1-NN: Uses classification from most similar case in training data
JRip 90.1% 80.2% RIPPER: Repeatedly grows, prunes, and optimizes rule set

KStar 90.0% 78.0% Instance-based learner using an entropy-based distance function
BayesNet 87.9% 77.5% Bayesian network learner with simple estimator

NaiveBayes 87.4% 76.2% Bayesian classifier with naive independence assumption
RandomTree 85.1% 77.2% Decision tree considering randomly chosen attributes
AdaBoostM1 83.7% 77.8% Boosting algorithm using one-level decision trees

LBR 82.9% 70.3% Learns local Bayesian rules at classification time
DecisionStump 79.4% 73.9% One-level decision tree with two branches

AODE 78.2% 71.4% Average of Bayesian classifiers with one dependence each
MultiLayerPerceptron 77.3% 58.3% Artificial neural network using backpropagation

OneR 76.9% 67.0% Based on only the most informative attribute’s value
HyperPipes 70.8% 67.0% Uses attribute bounds to handle large attribute sets

Prism 70.0% 60.8% Creates modular rule sets, aiming to be understandable
ZeroR 66.2% 61.9% Average classification, ignores the problem query

Id3 61.1% 54.7% Decision tree, greedily picks nodes to minimize entropy
VotedPerceptron 51.6% 45.8% Linear classifier, works best with large margins

Winnow 46.0% 40.1% Linear classifier, handles many irrelevant dimensions

Auto-WEKA [45,25] is a tool for automatically select-

ing and parameterizing reasoning algorithms for a given data

set using Bayesian optimization techniques. In their exper-

iments, Auto-WEKA often performed better than standard

algorithm selection/hyperparameter optimization methods,

especially on large datasets. They conclude that ”some form

of algorithm selection is essential for achieving good perfor-

mance”. Their system serves the same purpose as the meta-

reasoning component in ALMA, but uses offline analysis

on a large training set to determine one algorithm that will

then be used for a separate test data set. In contrast ALMA

performs incremental learning and performs both classifica-

tions and optimizations at run-time.

Stacking [49] can refer to a very general scheme of us-

ing multi-layer generalizers, or the more specific approach

of training a meta-level learner using the output of base-

level learners as inputs. This has been further developed as

blending, which proved to be highly successful in the Net-

flix Prize challenge [4] when tuned appropriately. The basic

form of stacking is less successful, and in particular does

not perform well for our experiment in section 5.3 with an

overall score of 67%, worse than most individual reasoning

methods. Even achieving this score required some manual

tuning in selecting which algorithms would be enabled per

dataset, since by default the Stacking implementation would

fail if any of the individual methods were unable to process

the dataset, resulting in overall score of only 18%. The rea-

son for the poor behavior is two-fold: first, in this case the

meta-level method is trained based on already-made classi-

fications, and in effect would have to reverse-engineer how

the classifications were made just to have the same informa-

tion available as the base-level learners. Second, the stacking

meta-algorithm relies on having classifications available for

all the base learners and has no means of prioritization. This

means that all the base learners have to be trained before any

classifications can be made, which is highly inefficient and

uses up most of the available time on training the slowest

methods.

The MultiScheme classifier combiner available in

WEKA can be used to decide which algorithm to use based

on the observed training error, or by the estimated er-

ror based on cross-validation. The default mode is to use

the training error, which achieves a score of 73% - bet-

ter than Stacking, but still worse than most of the indi-

vidual reasoning methods. Using MultiScheme with 5-fold

cross-validation performs worse, with a score of 58%. As

expected, when directly comparing models based on the

same training data, the accuracy achieved by using cross-

validation is actually higher than when just using the train-

ing error. However, in our experiments where computing

resources are limited, it is more valuable to spend time on

building new stronger models that include additional train-

ing data than to spend extra time on selecting the very best

among a set of poorer models. This result supports the gen-

eral approach behind ALMA - the key to good overall per-

formance is to prioritize effectively based on whole-system

performance, not using the most powerful local optimiza-

tions in isolation.

A Learning System based on Lazy Metareasoning 15

Sartre [38] is a computer poker player that works by im-

itating other previous computer programs by using a large

case base of their behaviors in previous games. When Sartre

decides which action to take, the case base is examined

to find similar previous situations, and the past behavior

is reused and applied to the current situation to decide the

action. Sartre uses one case base for each of three differ-

ent computer programs to imitate, and has to incrementally

choose which case base to use at each step to determine what

action to take. Sartre uses the results from playing using

each case base so far against a given opponent, and applies

the UCB algorithm to determine which case base should be

used next. In experiments with limit Texas Hold’em with

two very different opponents, using UCB to choose the case

base produced the best results, performing better than im-

itating any of the individual case bases and better than a

plurality-vote ensemble version using the same case bases.

Sartre builds on an earlier incarnation of ALMA’s general

approach to multi-method learning, but selecting between a

small fixed number of case bases instead of a wide variety

of parameterized reasoning methods.

Soar [27] is a cognitive theory, aimed to explain human

cognitive behavior as well as to serve as a platform for de-

veloping artificial intelligence systems. Symbolic Concept

Acquisition (SCA) is a concept learning algorithm that has

been built on top of the Soar architecture using produc-

tion rules. The rules employed in SCA are very simple, but

through observing which rules are most useful in practice,

the system can determine which of these learned rules are

the most important. This approach is similar to the motiva-

tion behind ALMA, but with a basic implementation that is

focused on illustrating cognitive concepts rather than pre-

dictive accuracy.

GILA (Generalized Integrated Learning Architecture)

[51] is based on the combined use of several heteroge-

neous and independent problem solving and learning meth-

ods, using an ensemble architecture in which a central meta-

reasoning executive (MRE) controls the processing. It is

aimed at addressing problems in difficult real-world do-

mains, where tasks are complex with multiple interacting

subproblems, and where near-optimal solutions are called

for. The architecture is developed as a joint effort of 11 uni-

versities, institutes, and companies, under a DARPA con-

tract to enable better adaptive control of the airspace un-

der traffic-intense airplane operations [52]. In GILA, meta-

reasoning is used to combine and coordinate methods during

a single problem-solving attempt, while in ALMA it is used

to learn about the system at a meta-level based on previous

problem-solving attempts.

7 Conclusions

We have presented a system for automatically combining

reasoning methods in a hybrid system. Our metareasoning

architecture and system design emphasizes laziness, and

evaluates the various reasoning methods at run-time, based

on their actual empirical performance on the specific domain

problems to be solved.

We treat the task of discovering which reasoning meth-

ods perform well as an exploration/exploitation trade-off

problem, where the system has to decide whether to improve

the accuracy of lower-performing methods or concentrate

on the highest-performing ones. Using this approach, our

system will only learn to approach the performance of the

best individual reasoning method, and does not perform well

initially (when the system starts as a blank slate and noth-

ing is known about their performance). Over time our sys-

tem’s performance increases, and in experiments is able to

increasingly identify the best-performing reasoning method

for each data set, outperforming any individual reasoning

method.

Using the caching component presented in this paper,

our lazy metareasoning system can also employ significantly

more computationally expensive methods to make predic-

tions, because their runtime requirements to build a model

are amortized over a large number of problem query predic-

tions. While this approach does not include the latest avail-

able information for every problem solving attempt (i.e. is

not fully lazy), the predictive power is often significantly

better and provides better overall performance. Using our

metareasoning architecture this trade-off between the advan-

tages of eager and lazy reasoning methods can be performed

lazily at the meta-level at runtime.

While the experiments in this paper only explore a lim-

ited number of data sets, the results validate our assumptions

that different methods perform well on different data sets,

and that accuracy for any given method/dataset pair tends

to increase relatively smoothly. The results also show that

using a metareasoning system such as ALMA can take ad-

vantage of this fact, and achieve higher performance than

any of the base algorithms even using the same time con-

straints. This is a noteworthy difference compared to other

metareasoning approaches such as blending that typically

require vastly more computational resources than a base al-

gorithm.

The results from our experiments also confirm the gen-

eral usefulness of method combination and evaluation based

on empirically measured performance, as the best overall

base-level methods also use various form of metareasoning,

multiple methods, cross-validation, ensembles, iterative op-

timization, pruning, etc.

Using the component framework in ALMA, the system’s

performance can be further improved in the future by adding

16 Tor Gunnar Houeland, Agnar Aamodt

new components with additional capabilities. For example,

in our resource-limited experiment it was a net loss to al-

ways perform cross-validation because that consumed too

much time, but it is not necessary to choose between either

always or never performing cross-validation. By creating

a new cross-validation component, it would be possible to

adaptively employ cross-validation during node evaluations

at run-time, based on whether or not it’s producing better

empirical results for a given reasoning scenario. Similarly,

a more powerful tuning component could be created based

on hyperparameter optimization methods, which would pre-

sumably increase accuracy at the cost of increased computa-

tional requirements. Then it could be automatically included

only when it was actually beneficial, based on observed per-

formance.

Including additional components has a cost though,

since additional exploration time is required to determine

whether they should be included or not. For example, in

our experiment with WEKA reasoning methods, the system

would have performed slightly better (+0.16% score) if the

Winnow, VotedPerceptron, and Id3 components were not in-

cluded. The effort spent on evaluating these components was

a waste, since the result was always that they shouldn’t be

used. Given a sufficiently large and representative bench-

mark collection of datasets, it might be feasible to determine

which components are worthwhile or not based directly on

how they affect overall performance across the benchmark.

However, as can be seen from the relatively modest differ-

ence in performance, ALMA is still able to achieve good

results even when poorly-performing components are in-

cluded.

References

1. Aha, D.W. (ed.): Lazy Learning. Kluwer Academic Publishers,
Norwell, MA, USA (1997)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of
the multiarmed bandit problem. Mach. Learn. 47(2-3), 235–256
(2002). URL https://doi.org/10.1023/A:1013689704352

3. Bates, J.M., Granger, C.W.: The combination of forecasts. Journal
of the Operational Research Society 20(4), 451–468 (1969)

4. Bennett, J., Lanning, S., et al.: The Netflix prize. In: Proceedings
of KDD cup and workshop, vol. 2007, p. 35. New York, NY, USA
(2007)

5. Bonissone, P.P.: Lazy meta-learning: creating customized model
ensembles on demand. In: IEEE World Congress on Computa-
tional Intelligence, pp. 1–23. Springer (2012)

6. Brügmann, B.: Monte Carlo Go. In: AAAI Fall symposium on
Games: Playing, Planning, and Learning (1993)

7. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble
selection from libraries of models. In: Proceedings of the twenty-
first international conference on Machine learning, p. 18. ACM
(2004)

8. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games.
Cambridge University Press (2006)

9. Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-
armed bandits. In: D. Koller, D. Schuurmans, Y. Bengio, L. Bottou

(eds.) Advances in Neural Information Processing Systems 21, pp.
273–280. Curran Associates, Inc. (2009)

10. Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by
meta-learning. In: Proceedings of the second international confer-
ence on information and knowledge management, pp. 314–323.
ACM (1993)

11. Clemen, R.T.: Combining forecasts: A review and annotated bibli-
ography. International journal of forecasting 5(4), 559–583 (1989)

12. Cox, M.: Introspective multistrategy learning: Constructing a
learning strategy under reasoning failure. Ph.D. thesis, College
of Computing, Georgia Institute of Technology (1996)

13. Cox, M.T., Eiselt, K., Kolodner, J., Nersessian, N., Recker, M., Si-
mon, T.: Introspective multistrategy learning: On the construction
of learning strategies. Artificial Intelligence 112, 1–55 (1999)

14. Dietterich, T.G.: Ensemble methods in machine learn-
ing. In: Proceedings of the First International Work-
shop on Multiple Classifier Systems, MCS ’00, pp. 1–
15. Springer-Verlag, London, UK, UK (2000). URL
http://dl.acm.org/citation.cfm?id=648054.743935

15. Fox, S., Leake, D.B.: Introspective reasoning for index refinement
in case-based reasoning. J. Exp. Theor. Artif. Intell. 13(1), 63–88
(2001). URL https://doi.org/10.1080/09528130010029794

16. Francis, A.G., Ram, A.: The utility problem in case-based reason-
ing. In: AAAICBR-93, the Proceedings of the 1993 Case-Based
Reasoning Workshop (1993)

17. Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for
Monte-Carlo Go. Twentieth Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2006) (2006)

18. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D.,
Lloyd, J.R., Macià, N., Ray, B., Romaszko, L., Sebag, M., Stat-
nikov, A., Treguer, S., Viegas, E.: A brief review of the ChaLearn
AutoML challenge: Any-time any-dataset learning without hu-
man intervention. In: F. Hutter, L. Kotthoff, J. Vanschoren
(eds.) Proceedings of the Workshop on Automatic Machine Learn-
ing, Proceedings of Machine Learning Research, vol. 64, pp.
21–30. PMLR, New York, New York, USA (2016). URL
http://proceedings.mlr.press/v64/guyon review 2016.html

19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I.H.: The WEKA data mining software: An update.
SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

20. Holte, R.: Very simple classification rules perform well on most
commonly used datasets. Machine Learning 11, 63–91 (1993)

21. Houeland, T.G., Aamodt, A.: Towards an introspective architec-
ture for meta-level reasoning in clinical decision support sys-
tems. ICCBR 2009, 7th Workshop on CBR in the Health Sciences
(2009)

22. Houeland, T.G., Aamodt, A.: The Utility Problem for Lazy
Learners - Towards a Non-eager Approach, pp. 141–155.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010). URL
https://doi.org/10.1007/978-3-642-14274-1 12

23. Houeland, T.G., Bruland, T., Aamodt, A., Langseth, H.: Extended
abstract: Combining CBR and BN using metareasoning. In:
A. Kofod-Petersen, F. Heintz, H. Langseth (eds.) SCAI, Frontiers
in Artificial Intelligence and Applications, vol. 227, pp. 189–190.
IOS Press (2011). URL https://doi.org/10.3233/978-1-60750-754-
3-189

24. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In:
ECML-06. Number 4212 in LNCS, pp. 282–293. Springer (2006)

25. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown,
K.: Auto-weka 2.0: Automatic model selection and hyperparame-
ter optimization in weka. Journal of Machine Learning Research
17, 1–5 (2016)

26. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak,
M.: Ensemble learning for data stream analysis: a survey. Infor-
mation Fusion 37, 132–156 (2017)

27. Laird, J.: The Soar Cognitive Architecture. MIT Press (2012)

A Learning System based on Lazy Metareasoning 17

28. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of
trends and technologies. Artificial intelligence review 44(1), 117–
130 (2015)

29. Lenz, M.: CABATA: A hybrid CBR system. In: M.M. Richter,
S. Wess, K.D. Althoff, F. Maurer (eds.) First European Workshop
on Case-Based Reasoning (EWCBR-93): Posters and Presenta-
tions (Volume I), pp. 204–209 (1993)

30. Li, B., Hoi, S.C.H.: Online portfolio selection: A sur-
vey. ACM Comput. Surv. 46(3), 35:1–35:36 (2014). URL
https://doi.org/10.1145/2512962

31. Lichman, M.: UCI machine learning repository (2013). URL
http://archive.ics.uci.edu/ml. Accessed: 2017-05-26

32. Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature
survey. Artificial Intelligence Review pp. 1–19 (2014)

33. Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: En-
semble approaches for regression: A survey. ACM Computing
Surveys (CSUR) 45(1), 10 (2012)

34. Mitchell, T.M.: The need for biases in learning generalizations.
Tech. rep. (1980)

35. Nascimento, D.S., Canuto, A.M., Coelho, A.L.: An empirical
analysis of meta-learning for the automatic choice of architec-
ture and components in ensemble systems. In: Intelligent Systems
(BRACIS), 2014 Brazilian Conference on, pp. 1–6. IEEE (2014)

36. Radhakrishnan, J., Ontañón, S., Ram, A.: Goal-driven learning
in the gila integrated intelligence architecture. In: C. Boutilier
(ed.) IJCAI, pp. 1205–1210 (2009). URL http://dblp.uni-
trier.de/db/conf/ijcai/ijcai2009.html

37. Rice, J.R.: The algorithm selection problem. Advances in Com-
puters 15, 65–118 (1976). URL https://doi.org/10.1016/S0065-
2458(08)60520-3

38. Rubin, J., Watson, I.: On combining decisions from multiple ex-
pert imitators for performance. In: T. Walsh (ed.) IJCAI, pp. 344–
349. IJCAI/AAAI (2011)

39. Salzberg, S.L.: On comparing classifiers: Pitfalls to
avoid and a recommended approach. Data Mining
and Knowledge Discovery 1(3), 317–328 (1997). URL
https://doi.org/10.1023/A:1009752403260

40. Schaffer, C.: Selecting a classification method by cross-
validation. Machine Learning 13(1), 135–143 (1993). URL
https://doi.org/10.1007/BF00993106

41. Schapire, R.E.: The Boosting Approach to Machine Learning: An
Overview, pp. 149–171. Springer New York, New York, NY
(2003). URL https://doi.org/10.1007/978-0-387-21579-2 9

42. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Grae-
pel, T., Hassabis, D.: Mastering the game of Go with deep neu-
ral networks and tree search. Nature 529(7587), 484–489 (2016).
URL https://doi.org/10.1038/nature16961

43. Simm, J.: Survey of hyperparameter optimization in NIPS2014.
https://github.com/jaak-s/nips2014-survey (2015). Accessed:
2017-05-26

44. Thompson, W.R.: On the likelihood that one unknown proba-
bility exceeds another in view of the evidence of two samples.
Biometrika 25(3-4), 285–294 (1933)

45. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-
WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In: Proc. of KDD-2013, pp. 847–855
(2013)

46. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-
learning. Artif. Intell. Rev. 18(2), 77–95 (2002). URL
https://doi.org/10.1023/A:1019956318069

47. Wallis, K.F.: Combining forecasts – forty years later. Ap-
plied Financial Economics 21(1-2), 33–41 (2011). URL
https://doi.org/10.1080/09603107.2011.523179

48. Watson, I.: A case study of maintenance of a commercially fielded
case-based reasoning system. Computational Intelligence 17,
387–398 (2001)

49. Wolpert, D.H.: Stacked generalization. Neural Networks
5(2), 241 – 259 (1992). URL https://doi.org/10.1016/S0893-
6080(05)80023-1

50. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple clas-
sifier systems as hybrid systems. Information Fusion 16, 3–17
(2014)

51. Zhang, X.S., Shrestha, B., Yoon, S., Kambhampati, S., et al.: An
ensemble architecture for learning complex problem-solving tech-
niques from demonstration. ACM Trans. Intell. Syst. Technol.
3(4), 75:1–75:38 (2012)

52. Zhang, X.S., Yoon, S., DiBona, P., Appling, D.S., Ding, L., et
al.: An ensemble learning and problem solving architecture for
airspace management. In: K.Z. Haigh, N. Rychtyckyj (eds.) Pro-
ceedings of Twenty-First Annual Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI-09). AAAI (2009)

53. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement
learning (2017). URL https://arxiv.org/abs/1611.01578

ISBN 978-82-326-4734-7 (printed ver.)
ISBN 978-82-326-4735-4 (electronic ver.)

 1503-8181

Doctoral theses at NTNU, 2020:193

Tor Gunnar Høst Houeland

Automated lazy metalearning in
introspective reasoning systems

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2020:193
Tor G

unnar H
øst H

oueland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce

	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

